Circular orbits and accretion process near a regular phantom black hole

  • PDF / 863,155 Bytes
  • 25 Pages / 439.37 x 666.142 pts Page_size
  • 87 Downloads / 152 Views

DOWNLOAD

REPORT


Circular orbits and accretion process near a regular phantom black hole A. Ditta1 · G. Abbas1 Received: 2 April 2020 / Accepted: 1 August 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract The relativistic accretion onto astrophysical compact objects such as black holes and neutron stars is the natural phenomena for releasing energy, with up to 40% of the rest-mass energy of the matter accreting on the black hole able to be liberated. High luminosities due to accretion are observed in X-ray binaries, and in active galactic nuclei (AGN). In this paper, we investigate the geodesics motion and accretion process near a regular phantom black hole by taking an isothermal fluid with spherically symmetric black hole spacetime. The geodesic motion around the black hole during accretion provide the disc like structure. Here, we give some reasons to make circular orbits and accretion process for the considered black hole. Firstly, we discuss the motion of test particles with stabilities near the equatorial plane which make the circular orbits. Then we analyze perturbations via restoring forces and oscillations of particles around the central object. Finally, we discuss the critical speed of the fluid flow and maximum accretion rate. The physical validity of our results shows that the phantom parameter b plays an important role for the circular orbits and the maximum accretion rate. Keywords Circular orbits · Accretion · phantom black hole

Contents 1 Introduction . . . . . . . . . . . . . . . . . 2 Phantom spacetime . . . . . . . . . . . . . . 3 Geodesic structure: general formulism . . . 3.1 Circular motions . . . . . . . . . . . . . 3.2 Circular orbits and radiation energy flux

B

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

G. Abbas [email protected] A. Ditta [email protected]

1

Department of mathematics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan 0123456789().: V,-vol

123

77

Page 2 of 25

3.3 Oscillations . . . . . . . 4 Basic dynamical equations . . 4.1 Dynamical parameters . . 4.2 Mass expansion . . . . . 4.3 Critical accretion . . . . 5 Circular equatorial geodesics 5.1 Epicyclic frequencies . . 6 Conclusion . . . . . . . . . . References . . . . . . . . . . . .

A. Ditta, G. Abbas . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. .