Composite Shells
Composite shells are studied in this chapter. First, equations governing the behavior of composite shells are derived, and then both static and dynamic problems of stability loss of composite shells are addressed.
- PDF / 13,299,589 Bytes
- 424 Pages / 453.547 x 683.15 pts Page_size
- 29 Downloads / 302 Views
Jan Awrejcewicz Vadim A. Krysko
Chaos in Structural Mechanics
1 23
..
Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems – cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence. The two major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, and the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.
Editorial and Programme Advisory Board ´ P´eter Erdi Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences, Budapest, Hungary
Karl Friston Institute of Cognitive Neuroscience, University College London, London, UK
Hermann Haken Center of Synergetics, University of Stuttgart, Stuttgart, Germany
Janusz Kacprzyk System Research, Polish Academy of Sciences, Warsaw, Poland
Scott Kelso Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
J¨urgen Kurths Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany
Linda Reichl Center for Complex Quantum Systems, University of Texas, Austin, USA
Peter Schuster Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria
Frank Schweitzer System Design, ETH Zurich, Zurich, Switzerland
Didier Sornette Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland
Understanding Complex Systems Founding Editor: J.A. Scott Kelso
Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems
Data Loading...