Convexity Methods in Hamiltonian Mechanics

In the case of completely integrable systems, periodic solutions are found by inspection. For nonintegrable systems, such as the three-body problem in celestial mechanics, they are found by perturbation theory: there is a small parameter € in the problem,

  • PDF / 29,255,233 Bytes
  • 258 Pages / 481.89 x 685.98 pts Page_size
  • 84 Downloads / 271 Views

DOWNLOAD

REPORT


Editorial Board

E. Bombieri, Princeton S. Feferman, Stanford N.H.Kuiper, Bures-sur-Yvette P. Lax, New York H. W. Lenstra, Jr., Berkeley R Remmert (Managing Editor), Munster W. Schmid, Cambridge, Mass. J-P. Serre, Paris 1. Tits, Paris K. K. Uhlenbeck, Austin

Ivar Ekeland

Convexity Methods in Hamiltonian Mechanics

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Ivar Ekeland CEREMADE, Universite Paris-Dauphine F-75775 Paris Cedex 16, France

Mathematics Subject Classification (1980): 58Exx, 58Fxx, 70Hxx, 70Jxx, 70Kxx ISBN-13: 978-3-642-74333-7 001: 10.1007/978-3-642-74331-3

e-ISBN-13: 978-3-642-74331-3

Library of Congress Cataloging-in-Publication Data Ekeland, I. (lvar), 1944- Convexity methods in Hamiltonian mechanics I Ivar Ekeland, p. cm.(Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 19) Bibliography: p. Includes index.

ISBN-13: 978-3-642-74333-7 I. Hamiltonian systems. 2. Convex domains. I. Title II. Series.

QA614.83.E44 1990 514'.74-dc20

89-11405

This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990 Softcover reprint of the hardcover 1st edition 1990 2141/3140-543210 - Printed on acid-free paper

Table of Contents

Chapter I. Linear Hamiltonian Systems ...............................

1

Floquet Theory and Stability ..................................... Krein Theory and Strong Stability ................................ Time-Dependence of the Eigenvalues of R(t) ...................... Index Theory for Positive Definite Systems ........................ The Iteration Formula ............................................ The Index of a Periodic Solution to a Nonlinear Hamiltonian System Examples ......................................................... Non-periodic Solutions: The Mean Index..........................

1 7 15 23 34 54 65 74

Chapter II. Convex Hamiltonian Systems .............................

79

1. Fundamentals of Convex Analysis .................................

2. Convex Analysis on Banach Spaces................................ 3. Integral Functionals on LOi. ..•..••...•••••.••••••••••.•...••.•...•. 4. The Clarke Duality Formula ......................................

79 86 93 98

Chapter III. Fixed-Period Problems: The Sublinear Case..............

110

Introduction ...................................................... An Existence Result .............................................. Autonomous Systems............................................. Nonautonomous Systems ......................