Cryogenic Light Detectors for Background Suppression: The CALDER Project

  • PDF / 1,112,323 Bytes
  • 7 Pages / 439.37 x 666.142 pts Page_size
  • 30 Downloads / 205 Views

DOWNLOAD

REPORT


Cryogenic Light Detectors for Background Suppression: The CALDER Project N. Casali1   · C. Bellenghi1,2 · M. Calvo3 · L. Cardani1 · G. Castellano4 · I. Colantoni5 · C. Cosmelli1,2 · A. Cruciani1 · S. Di Domizio6,7 · J. Goupy3 · M. Martinez8,9 · A. Monfardini3 · G. Pettinari4 · H. le Sueur10 · M. Vignati1 Received: 3 August 2019 / Accepted: 30 June 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract The CALDER project aims to realize cryogenic light detectors for the next generation of experiments searching for rare events. More in detail, the main application of these devices will be the background suppression in future cryogenic calorimetric experiments searching for neutrinoless double beta decay ( 0𝜈DBD). This is the case of CUPID, a next-generation 0𝜈DBD observatory, able to take advantage from particle identification to dramatically reduce the background events. In this contribution, we show the status of the CALDER project. The light sensors developed in this R&D are based on kinetic inductance detector operated in the phonon-mediated approach. Their energy resolution (20 eV), time response ( μ s) and multiplexing capability make them very promising for the future CUPID experiment. Keywords  Light detector · Cryogenic detector · Resonator · Phonon-mediated * N. Casali [email protected] 1

Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Italy

2

Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy

3

Institut Neel, CNRS/UJF, 25 rue des Martyrs, BP 166, 38042 Grenoble, France

4

Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie (CNR - IFN), Via Cineto Romano 42, 00156 Rome, Italy

5

Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR - NANOTEC), c/o Dip. Fisica, Sapienza Università di Roma, 00185 Rome, Italy

6

Department of Physics, University of Genoa, Genoa, Italy

7

Istituto Nazionale di Fisica Nucleare - Sezione di Genova, Genoa, Italy

8

Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

9

Fundación ARAID, Av. de Ranillas 1D, 50018 Zaragoza, Spain



10

CSNSM, Univ. Paris‑Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

13

Vol.:(0123456789)



Journal of Low Temperature Physics

1 Introduction The CUORE experiment [1] exploits an array of 988 cryogenic calorimeters to search for a rare nuclear transition, the neutrinoless double beta decay ( 0𝜈DBD) [2]. Contrary to the well-established two-neutrino double beta decay, 0𝜈DBD is a hypothesized process not allowed by the standard model since it violates B-L [3]. It has never been observed and the current upper limits on its half-life are of the order of 1024 −1026 year depending on the nucleus. The sensitivity of the CUORE experiments, after 5  years of data taking, will be of the order of 1026  year: Its results will be limited by background events coming from 𝛼 particle interactions [4]. For this reason, the CUPID (CUORE Upgrade with Particle IDentific