Current clinical applications of coronary optical coherence tomography
- PDF / 1,739,294 Bytes
- 10 Pages / 595.276 x 790.866 pts Page_size
- 5 Downloads / 249 Views
REVIEW ARTICLE
Current clinical applications of coronary optical coherence tomography Teruyoshi Kume1 · Shiro Uemura1
Received: 21 December 2016 / Accepted: 4 July 2017 / Published online: 14 July 2017 © The Author(s) 2017. This article is an open access publication
Abstract Optical coherence tomography (OCT) is an intra-coronary diagnostic technique that provides detailed imagings of blood vessels in the current cardiac catheterization laboratory. The higher resolution of OCT often provides superior delineation of each structure compared with intravascular ultrasound (IVUS), and it can reliably visualize the microstructure of normal and diseased arteries. The capabilities of OCT are well suited for the identification of calcified plaque and neointima formation after stent implantation. It has been reported that OCT-guided percutaneous coronary intervention (PCI) resulted in equivalent clinical and angiographic outcomes in comparison with IVUSguided PCI. Recently, the three-dimensional reconstruction of OCT and a real-time point-to-point correspondence between coronary angiographic and OCT/OFDI images have been developed and provide useful information to PCI operators. The unique capabilities of OCT as an investigational tool for high-risk lesions will serve the cardiology community well, as it moves us toward a better understanding of atherosclerotic plaque. In addition, because of the development of new OCT technology, OCT has become a notable catheter-based imaging technology that can provide practical guidance for PCI in clinical settings. Keywords Optical coherence tomography · Imaging · Vulnerable plaque · Thrombus · Coronary intervention
Introduction Optical coherence tomography (OCT) is an intra-coronary diagnostic technique that provides detailed imagings of blood vessels in the current cardiac catheterization laboratory. The first OCT system was developed by a group of James G. Fujimoto in 1991 [1]. By the early 2000s, the first images of human coronary atherosclerosis were recorded by Yabushita and colleagues [2]. In 2008, the first commercially available time-domain OCT system (M2 OCT imaging system, LightLab Imaging, Inc., Westford, MA, USA) was introduced and included under insurance coverage in Japan. However, the time-domain OCT system needed an over-the-wire-type catheter with an occlusion balloon to obtain continuous long-sectional images due to the limitation of pullback speed. Therefore, the application of time-domain OCT was mostly limited to research purposes. More recently, new generation OCT systems, such as frequency-domain OCT and optical frequency-domain imaging (OFDI) systems, have been developed to overcome this limitation [3]. Since then, OCT has become a noticeable catheter-based imaging technology that can provide scientific insights into vascular biology and practical guidance for percutaneous intervention (PCI) in clinical settings. In the current review article, updates on OCT image interpretation and clinical applications of coronary OCT are discussed.
OCT image interpret
Data Loading...