Decoupled Impedance and Passivity Control Methods
In this Chapter, the problem of control of Aerial RObotic MAnipulators (AROMAs) involved in operations requiring the contact with the environment is tackled. Two different approaches are presented: a Cartesian admittance scheme and a decoupled impedance i
- PDF / 21,863,822 Bytes
- 385 Pages / 453.544 x 683.151 pts Page_size
- 36 Downloads / 231 Views
Anibal Ollero Bruno Siciliano Editors
Aerial Robotic Manipulation Research, Development and Applications
Springer Tracts in Advanced Robotics Volume 129
Series Editors Bruno Siciliano, Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Napoli, Italy Oussama Khatib, Artificial Intelligence Laboratory, Department of Computer Science, Stanford University, Stanford, CA, USA Advisory Editors Nancy Amato, Computer Science & Engineering, Texas A&M University, College Station, TX, USA Oliver Brock, Fakultät IV, TU Berlin, Berlin, Germany Herman Bruyninckx, KU Leuven, Heverlee, Belgium Wolfram Burgard, Institute of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg, Germany Raja Chatila, ISIR, Paris cedex 05, France Francois Chaumette, IRISA/INRIA, Rennes, Ardennes, France Wan Kyun Chung, Robotics Laboratory, Mechanical Engineering, POSTECH, Pohang, Korea (Republic of) Peter Corke, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia Paolo Dario, LEM, Scuola Superiore Sant’Anna, Pisa, Italy Alessandro De Luca, DIAGAR, Sapienza Università di Roma, Roma, Italy Rüdiger Dillmann, Humanoids and Intelligence Systems Lab, KIT - Karlsruher Institut für Technologie, Karlsruhe, Germany Ken Goldberg, University of California, Berkeley, CA, USA John Hollerbach, School of Computing, University of Utah, Salt Lake, UT, USA Lydia E. Kavraki, Department of Computer Science, Rice University, Houston, TX, USA Vijay Kumar, School of Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA Bradley J. Nelson, Institute of Robotics and Intelligent Systems, ETH Zurich, Zürich, Switzerland Frank Chongwoo Park, Mechanical Engineering Department, Seoul National University, Seoul, Korea (Republic of) S. E. Salcudean, The University of British Columbia, Vancouver, BC, Canada Roland Siegwart, LEE J205, ETH Zürich, Institute of Robotics & Autonomous Systems Lab, Zürich, Switzerland Gaurav S. Sukhatme, Department of Computer Science, University of Southern California, Los Angeles, CA, USA
The Springer Tracts in Advanced Robotics (STAR) publish new developments and advances in the fields of robotics research, rapidly and informally but with a high quality. The intent is to cover all the technical contents, applications, and multidisciplinary aspects of robotics, embedded in the fields of Mechanical Engineering, Computer Science, Electrical Engineering, Mechatronics, Control, and Life Sciences, as well as the methodologies behind them. Within the scope of the series are monographs, lecture notes, selected contributions from specialized conferences and workshops, as well as selected PhD theses. Special offer: For all clients with a print standing order we offer free access to the electronic volumes of the Series published in the current year. Indexed by DBLP, Compendex, EI-Compendex, SCOPUS, Zentralblatt Math, Ulrich’s, MathSciNet, Current Mathematical Publications, Mathematical Reviews, MetaPress and Spr