Development and fabrication of disease resistance protein in recombinant Escherichia coli
- PDF / 1,225,921 Bytes
- 10 Pages / 595.276 x 790.866 pts Page_size
- 92 Downloads / 199 Views
Open Access
RESEARCH
Development and fabrication of disease resistance protein in recombinant Escherichia coli Sefli Sri Wahyu Effendi1†, Shih‑I Tan1†, Chien‑Hsiang Chang1, Chun‑Yen Chen2, Jo‑Shu Chang1,3,4 and I‑Son Ng1*
Abstract Cyanobacteria and Spirulina produce C-phycocyanin (CPC), a water soluble protein associated pigment, which is extensively used in food and pharmaceutical industries. Other therapeutic proteins might exist in microalgal cells, of which there is limited knowledge. Such proteins/peptides with antibiotic properties are crucial due to the emergence of multi-drug resistant pathogens. In addition, the native expression levels of such disease resistant proteins are low, hindering further investigation. Thus, screening and overexpression of such novel proteins is urgent and important. In this study, a protein which was identified as a putative disease resistance protein (DRP) in the mixture of Spirulina product has been explored for the first time. To improve protein expression, DRP was cloned in the pET system, co-transformed with pRARE plasmid for codon optimization and was significantly overexpressed in E. coli BL21(DE3) under induction with isopropyl-β-d-1-thiogalactopyranoside (IPTG). Furthermore, soluble DRP exhibited intense antimicrobial activity against predominant pathogens, and an inhibition zone of 1.59 to 1.74 cm was obtained for E. coli. At a concentration 4 mg/mL, DRP significantly elevated the growth of L. rhamnosus ZY up to twofold showing probable prebiotic activities. Moreover, DRP showed potential as an effective antioxidant, and the scavenging ability for ROS was in the order of hydroxyl > DPPH > superoxide radicals. A putative disease resistance protein (DRP) has been identified, sequenced, cloned and over-expressed in E. coli as a functional protein. Thus expressed DRP showed potential anti-microbial and antioxidant properties, with promising therapeutic applications. Keywords: Disease resistance protein, Recombinant technology, Rare codon, Antibacterial, Antioxidant Introduction Microalgae, including diatoms of Bacillariophyta, green algae Chlorella sp. and blue-green algae cyanobacteria, serve as a natural carbon sink, and are known as a sustainable feedstock for biodiesel and biofuel production. The protein rich microalgal biomass is also known for the co-production of a number of high-value products viz., carbohydrates, bioplastic polymers, cosmetics, and food *Correspondence: [email protected] † Sefli Sri Wahyu Effendi and Shih-I Tan contributed equally to this work 1 Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan Full list of author information is available at the end of the article
additives (Li et al. 2018; Allen et al. 2018). Microalgae and cyanobacteria are naturally protein-rich (Teuling et al. 2019), and C-phycocyanin (CPC) is the dominant phycobiliprotein commonly seen in cyanobacteria (Eriksen 2008). CPC has been explored in pharmaceuticals as antibacterial, anticancer, antioxidants, health supplements, and vita
Data Loading...