Discrete Optimization with Interval Data Minmax Regret and Fuzzy App

In operations research applications we are often faced with the problem of incomplete or uncertain data. This book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals. It focuses on some basic

  • PDF / 176,427 Bytes
  • 11 Pages / 430 x 659.996 pts Page_size
  • 16 Downloads / 253 Views

DOWNLOAD

REPORT


1. Adlakha, V., Gladysz, B., Kamburowski, J.: Minimum Flows in (s,t) planar networks. Networks 21, 767–773 (1991) 2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows, theory, algorithms and applications. Prentice Hall, New Jersey (1993) 3. Ahuja, R.K., Ergun, O., Orlin, J., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123, 75–102 (2002) 4. Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the min-max and min-max regret assignment problems. Operations Research Letters 33(6), 634–640 (2005) 5. Aissi, H., Bazgan, C., Vanderpooten, D.: Complexity of the Min-Max (Regret) Versions of Cut Problems. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 789–798. Springer, Heidelberg (2005) 6. Aissi, H., Bazgan, C., Vanderpooten, D.: Pseudo-polynomial time algorithms for min-max and min-max regret problems. The 5th International Symposium on Operations Research and Its Applications (ISORA 2005), LNOR 5, 171–178 (2005) 7. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation Complexity of min-max (Regret) Versions of Shortest Path, Spanning Tree, and Knapsack. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 862–873. Springer, Heidelberg (2005) 8. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min-max and min-max regret versions of some combinatorial optimization problems. European Journal of Operational Research 179(2), 281–290 (2007) 9. Aissi, H., Bazgan, C., Vanderpooten, D.: Approximating Min-Max (Regret) Versions of Some Polynomial Problems. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 428–438. Springer, Heidelberg (2006) 10. Amoia, A., Cottafava, G.: Invariance properties of central trees. IEEE Trans. Circuit Theory CT-18, 465–467 (1971) 11. Armon, A., Zwick, U.: Multicriteria Global Minimum Cuts. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 65–76. Springer, Heidelberg (2004) 12. Aron, I., van Hentenryck, P.: A constraint satisfaction approach to the robust spanning tree problem with interval data. In: Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, Edmonton, Canada, pp. 18–25 (2002) 13. Aron, I., van Hentenryck, P.: On the complexity of the robust spanning tree problem with interval data. Operations Research Letters 32(1), 36–40 (2004)

210

References

14. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and approximation. In: Combinatorial optimization problems and their approximability properties, Springer, Heidelberg (1999) 15. Averbakh, I.: Minmax regret solutions for minimax optimization problems with uncertainty. Operations Research Letters 27(2), 57–65 (2000) 16. Averbakh, I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. A 90, 263–272 (2001) 17. Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization problems. Discrete Applied Mathematics 138(3), 289–301 (2004) 18. Averbakh, I.: Minmax regret line