Duality in Measure Theory
- PDF / 6,434,400 Bytes
- 202 Pages / 461 x 684 pts Page_size
- 34 Downloads / 319 Views
		    796 Corneliu Constantinescu
 
 Duality in Measure Theory
 
 Springer-Verlag Berlin Heidelberg New York 1980
 
 Author
 
 Corneliu Constantinescu Mathematisches Seminar ETH-Zentrum 8092 ZLJrich Switzerland
 
 AMS Subject Classifications (1980): Primary: 28A33, 28B05, 46E27, 46G10 Secondary: 28A10, 28A25, 28A35, 28C05, 46A20, 46A32, 4 6 A 4 0 ISBN 3-540-09989-1 ISBN 0-387-09989-1
 
 Springer-Verlag Berlin Heidelberg NewYork Springer-Verlag NewYork Heidelberg Berlin
 
 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1980 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
 
 Table
 
 of Contents Page
 
 Introduction
 
 .....................................................
 
 1
 
 ~ I. P r e l i m i n a r i e s i. V e c t o r
 
 lattices
 
 2. M e a s u r e s
 
 ..........................................
 
 5
 
 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 6
 
 3. I n t e g r a t i o n 4. C o n c a s s a @ e 5. S o m e
 
 ..............................................
 
 7
 
 ...............................................
 
 i0
 
 notations
 
 6. H y p e r s t o n i a n
 
 i.
 
 Bounded
 
 ...........................................
 
 spaces
 
 ......................................
 
 representations
 
 of
 
 (X,M)
 
 24
 
 ..............................
 
 26
 
 .................................
 
 31
 
 of measures
 
 3. R e p r e s e n t a t i o n s
 
 of
 
 4.
 
 Supplementar [ results
 
 ~ 3. D u a l s
 
 of spaces
 
 !. S t r u c t u r e s 2. S p a c e s 3. T h e
 
 4. S t r u c t u r e s 5. s p a c e s 6. T h e
 
 7. T e n s o r
 
 on
 
 Mp
 
 the
 
 representations
 
 .....
 
 38
 
 ........................................
 
 45
 
 to a measure
 
 ..........................
 
 53
 
 ...............................
 
 59
 
 ...............................
 
 64
 
 .....................................
 
 82
 
 Mb_
 
 • ...............................
 
 89
 
 of m e a s u r e s
 
 91
 
 M~ Mb, on
 
 M
 
 and Mc_ and
 
 of o p e r a t o r s
 
 spaces
 
 concernin~
 
 of measures
 
 associated
 
 spaces
 
 16
 
 .........................
 
 2. R e p r e s e n t a t i o n s
 
 (xtM)
 
 12
 
 Mb
 
 products
 
 and Qf
 
 M~ c-
 
 spaces
 
 8. T h e
 
 strong
 
 D.-P.vpropert~
 
 9. T h e
 
 strong
 
 approximation
 
 ...................
 
 ...............................
 
 105
 
 property .........................
 
 108
 
 ~=~&=~tor
 
 measures
 
 i.
 
 Preliminaries
 
 2.
 
 The
 
 3.
 
 Operators
 
 4.
 
 Vector
 
 5.
 
 Topologies
 
 Bibliography Index
 
 integral
 
 ........................................... with
 
 on
 
 subspaces
 
 measures on
 
 respect
 
 on the
 
 to
 
 of
 
 M~ c--
 
 Hausdorff spaces
 
 a vector
 
 of
 
 measure
 
 ...........
 
 .........................
 
 spaces vector
 
 ........		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	