Duality in Measure Theory

  • PDF / 6,434,400 Bytes
  • 202 Pages / 461 x 684 pts Page_size
  • 34 Downloads / 273 Views

DOWNLOAD

REPORT


796 Corneliu Constantinescu

Duality in Measure Theory

Springer-Verlag Berlin Heidelberg New York 1980

Author

Corneliu Constantinescu Mathematisches Seminar ETH-Zentrum 8092 ZLJrich Switzerland

AMS Subject Classifications (1980): Primary: 28A33, 28B05, 46E27, 46G10 Secondary: 28A10, 28A25, 28A35, 28C05, 46A20, 46A32, 4 6 A 4 0 ISBN 3-540-09989-1 ISBN 0-387-09989-1

Springer-Verlag Berlin Heidelberg NewYork Springer-Verlag NewYork Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1980 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

Table

of Contents Page

Introduction

.....................................................

1

~ I. P r e l i m i n a r i e s i. V e c t o r

lattices

2. M e a s u r e s

..........................................

5

..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

3. I n t e g r a t i o n 4. C o n c a s s a @ e 5. S o m e

..............................................

7

...............................................

i0

notations

6. H y p e r s t o n i a n

i.

Bounded

...........................................

spaces

......................................

representations

of

(X,M)

24

..............................

26

.................................

31

of measures

3. R e p r e s e n t a t i o n s

of

4.

Supplementar [ results

~ 3. D u a l s

of spaces

!. S t r u c t u r e s 2. S p a c e s 3. T h e

4. S t r u c t u r e s 5. s p a c e s 6. T h e

7. T e n s o r

on

Mp

the

representations

.....

38

........................................

45

to a measure

..........................

53

...............................

59

...............................

64

.....................................

82

Mb_

• ...............................

89

of m e a s u r e s

91

M~ Mb, on

M

and Mc_ and

of o p e r a t o r s

spaces

concernin~

of measures

associated

spaces

16

.........................

2. R e p r e s e n t a t i o n s

(xtM)

12

Mb

products

and Qf

M~ c-

spaces

8. T h e

strong

D.-P.vpropert~

9. T h e

strong

approximation

...................

...............................

105

property .........................

108

~=~&=~tor

measures

i.

Preliminaries

2.

The

3.

Operators

4.

Vector

5.

Topologies

Bibliography Index

integral

........................................... with

on

subspaces

measures on

respect

on the

to

of

M~ c--

Hausdorff spaces

a vector

of

measure

...........

.........................

spaces vector

........