Introduction to Grothendieck Duality Theory

  • PDF / 9,660,402 Bytes
  • 188 Pages / 504 x 720 pts Page_size
  • 102 Downloads / 340 Views

DOWNLOAD

REPORT


146

Allen Altman University of California, La Jolla, CAIUSA

Steven Kleiman M.I.T., Dept. of Mathematics, Cambridge, MAIUSA

Introduction to Grothendieck Duality Theory

Springer-Verlag Berlin· Heidelberg· New York 1970

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under §54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

C by Springer-Vedag Berlin> Heidelberg 1970. library of Congress Catalog Card Number 71"1'2180 Printed lit Germany. Tide No. 330'

CONTENTS

Preface Chapter I

Study of

(lJX

1

Main Duality Results

2

Further discussion of

•••••••••.••••••••••.•.•.•

6

3

Differentials on Projective Space •••••••••...••••••.•

10

4

The Fundamental Local Isomorphism •.••••.•.•..•••••..•

12

Chapter II

5 (lJx·

Completions, Primary Decomposition and Length

1

Completions

15

2

Support of a Sheaf •••..•.•..••••..•••••••.•••••••••.•

24

3

Pr imary Decomposition

••••.•••••••.••.••••••••••••.••

26

4

Length and Characteristic Functions •••••.•.••••••••••

32

Chapter III

Depth and Dimension

38

1

Dimension Theory in Noetherian Rings •••••••••••••••••

2

Dimension Theory in Algebras of Finite Type over a Field 42

3

Depth

" •••. " .•..••. "........

46

4

Cohen-Macaulay Modules and Regular Local Rings •••••••

54

5

Homological Dimension

••••••••••••••••••••••••.••••••

58

Chapter IV

Duality Theorems

1

The Yoneda Pairing

••••••••••••••••••••••••••••••••••

67

2

The Spectral Sequence of a Composite Functor •.•••••••

3

Complements on

70 73

Extci (F ,G)

••.•......•.•...........•.

4

Serre Duality

•.•..

. . •. . . . . . . . . . .. . . . . . . .. . .. . . . . .

5

Grothendieck Duality

••••••••••••••.•••••••.••••..•••

Chapter V

Flat Morphisms

1

Faithful Flatness

2

Flat Morphisms

3

The Local Criterion of Flatness

4

Constructible Sets

5

Flat Morphisms and Open sets

................•.............•....

.....•...............................

82 86

••••••••••••••••••••••••

90 95 99

Differentials.......................................

102

Chapter VI 1

75 77

... .. " .... " " "

" " " " " " " " " "

.. " . " "

.

" " " "

.

Etale Morphisms

- 4 -

5

Quasifinite Morphisms Unramified Morphisms Etale Morphisms Morphisms

6

Cove rs ••••••••••••••••••••••••••••••••••••••••.•••••

2 3 4

..................................

Chapter VII

Generalities

2

Serre's criterion •••••••••••••.•.•••.•••••••••.•..•• D'ivisors Stability Differential Properties ••••••.•..•..••••••••..•..•• Algebraic Schemes ....•••.•..................•.....•

4

5 6

••.•.•••••••••••••••.•••••••••••••••.••

..........................................

Chapter VIII

115

119 122

Smooth Morphisms

1 3

110 112

128 136

142 147

15