Introduction to Grothendieck Duality Theory
- PDF / 9,660,402 Bytes
- 188 Pages / 504 x 720 pts Page_size
- 103 Downloads / 402 Views
		    146
 
 Allen Altman University of California, La Jolla, CAIUSA
 
 Steven Kleiman M.I.T., Dept. of Mathematics, Cambridge, MAIUSA
 
 Introduction to Grothendieck Duality Theory
 
 Springer-Verlag Berlin· Heidelberg· New York 1970
 
 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under §54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.
 
 C by Springer-Vedag Berlin> Heidelberg 1970. library of Congress Catalog Card Number 71"1'2180 Printed lit Germany. Tide No. 330'
 
 CONTENTS
 
 Preface Chapter I
 
 Study of
 
 (lJX
 
 1
 
 Main Duality Results
 
 2
 
 Further discussion of
 
 •••••••••.••••••••••.•.•.•
 
 6
 
 3
 
 Differentials on Projective Space •••••••••...••••••.•
 
 10
 
 4
 
 The Fundamental Local Isomorphism •.••••.•.•..•••••..•
 
 12
 
 Chapter II
 
 5 (lJx·
 
 Completions, Primary Decomposition and Length
 
 1
 
 Completions
 
 15
 
 2
 
 Support of a Sheaf •••..•.•..••••..•••••••.•••••••••.•
 
 24
 
 3
 
 Pr imary Decomposition
 
 ••••.•••••••.••.••••••••••••.••
 
 26
 
 4
 
 Length and Characteristic Functions •••••.•.••••••••••
 
 32
 
 Chapter III
 
 Depth and Dimension
 
 38
 
 1
 
 Dimension Theory in Noetherian Rings •••••••••••••••••
 
 2
 
 Dimension Theory in Algebras of Finite Type over a Field 42
 
 3
 
 Depth
 
 " •••. " .•..••. "........
 
 46
 
 4
 
 Cohen-Macaulay Modules and Regular Local Rings •••••••
 
 54
 
 5
 
 Homological Dimension
 
 ••••••••••••••••••••••••.••••••
 
 58
 
 Chapter IV
 
 Duality Theorems
 
 1
 
 The Yoneda Pairing
 
 ••••••••••••••••••••••••••••••••••
 
 67
 
 2
 
 The Spectral Sequence of a Composite Functor •.•••••••
 
 3
 
 Complements on
 
 70 73
 
 Extci (F ,G)
 
 ••.•......•.•...........•.
 
 4
 
 Serre Duality
 
 •.•..
 
 . . •. . . . . . . . . . .. . . . . . . .. . .. . . . . .
 
 5
 
 Grothendieck Duality
 
 ••••••••••••••.•••••••.••••..•••
 
 Chapter V
 
 Flat Morphisms
 
 1
 
 Faithful Flatness
 
 2
 
 Flat Morphisms
 
 3
 
 The Local Criterion of Flatness
 
 4
 
 Constructible Sets
 
 5
 
 Flat Morphisms and Open sets
 
 ................•.............•....
 
 .....•...............................
 
 82 86
 
 ••••••••••••••••••••••••
 
 90 95 99
 
 Differentials.......................................
 
 102
 
 Chapter VI 1
 
 75 77
 
 ... .. " .... " " "
 
 " " " " " " " " " "
 
 .. " . " "
 
 .
 
 " " " "
 
 .
 
 Etale Morphisms
 
 - 4 -
 
 5
 
 Quasifinite Morphisms Unramified Morphisms Etale Morphisms Morphisms
 
 6
 
 Cove rs ••••••••••••••••••••••••••••••••••••••••.•••••
 
 2 3 4
 
 ..................................
 
 Chapter VII
 
 Generalities
 
 2
 
 Serre's criterion •••••••••••••.•.•••.•••••••••.•..•• D'ivisors Stability Differential Properties ••••••.•..•..••••••••..•..•• Algebraic Schemes ....•••.•..................•.....•
 
 4
 
 5 6
 
 ••.•.•••••••••••••••.•••••••••••••••.••
 
 ..........................................
 
 Chapter VIII
 
 115
 
 119 122
 
 Smooth Morphisms
 
 1 3
 
 110 112
 
 128 136
 
 142 147
 
 15		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	