Dynamic Models of the Firm Determining Optimal Investment, Financing

  • PDF / 13,723,813 Bytes
  • 199 Pages / 439 x 666 pts Page_size
  • 57 Downloads / 209 Views

DOWNLOAD

REPORT


434

Springer

Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo

Mark W. 1. Blok

Dynamic Models of the Firm Determining Optimal Investment, Financing and Production Policies by Computer

Springer

Author Dr. Mark W J. Blok System and Control Technology Group Eindhoven University of Technology P.O. Box 513 NL-5600 MB Eindhoven The Netherlands and A. T. Kearney P.O. Box 22926 NL-1100 DK Amsterdam The Netherlands

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme Blok, Mark W. J.: Dynamic models of the firm : determining optimal investment, financing and production policies by computer / Mark W. J. Blok. - Berlin; Heidelberg; New York; London; Paris; Tokyo; Hong Kong; Barcelona; Budapest: Springer, 1996 (Lecture notes in economics and mathematical systems; 434)

NE:GT ISBN-13: 978-3-540-60802-8 DOl: 10.1007/978-3-642-48401-8

e-ISBN-13: 978-3-642-48401-8

This work is subject to copyright. All rights are reserved, whether the whole or part ofthe material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1996

Typesetting: Camera ready by author SPIN: 10516207 42/3142-543210 - Printed on acid-free paper

Contents 1 Introduction 2 Mathematical Background to Dynamic Optimization 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 2.2 Analytical approach to the optimization problem 2.2.1 Problem formulation . . . . . . . . . . . . 2.2.2 Solving through path coupling . . . . . . 2.3 Numerical approach to the optimization problem 2.3.1 Discretization. 2.3.2 Method 1 . . . . . . . . . . . . . . . . . . 2.3.3 Method 2 . . . . . . . . . . . . . . . . . . 2.4 Economic interpretation of the adjoint variables. 2.5 General procedure . . . . . . . . . . . . . . . . .

1

5 5 5 5 9 10 11 12 14

15 16

Basic Model Introduction .. The model and its assumptions Examination of the paths . . . 3.3.1 Introducing the adjoint variables 3.3.2 Determining the feasible paths 3.3.3 Economic interpretation of paths 4, 8 and 10 Case study . . . . . . . . . . . 3.4.1 The case of i < (1 - f)r 3.4.2 The case of i > (1 - f)r Conclusions..........

17

4 A Model with Start-up Costs 4.1 Introduction . . . . . . . . . . 4.2 The model and its assumptions 4.3 Examination of the paths . . . 4.3.1 Introduction of the adjoint variables 4.3.2 Further examination of the stationary paths . 4.4 Case study . . . . . . . . . . . . . . . . . . . . . . .

33 33 34 36 36 38 43

3 The 3.1 3.2 3.3

3.4

3.5

17 17 20 20 21 22 23 24 29

32

vi

CONTENTS

4.5

4.4.1 The case of i < (1 - f)r 4.4.