Effective Assessment of AmI Intervention in Traffic Through Quantitative Measures
This chapter considers the challenge of quantifying the benefit of Ambient Intelligence (AmI) within a complex system, specifically a motorway traffic system. By nature, the deployment of AmI is distributed and inconsistent. Hence, an evaluation strategy
- PDF / 48,353 Bytes
- 6 Pages / 439.37 x 666.142 pts Page_size
- 37 Downloads / 173 Views
ogramme Advisory Board Henry Abarbanel, Institute for Nonlinear Science, University of California, San Diego, USA Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA Pe´ter E´rdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences, Budapest, Hungary Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany Viktor Jirsa, Centre National de la Recherche Scientifique (CNRS), Universite´ de la Me´diterrane´e, Marseille, France Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland Kunihiko Kaneko, Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, Japan Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA Markus Kirkilionis, Mathematics Institute and Centre for Complex Systems, University of Warwick, Coventry, UK J€ urgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany Andrzej Nowak, Department of Psychology, Warsaw University, Poland Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland Stefan Thurner, Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
Understanding Complex Systems Founding Editor: J.A. Scott Kelso
Future scientific and technological developments in many fields will necessarily depend upon coming to grips with complex systems. Such systems are complex in both their composition – typically many different kinds of components interacting simultaneously and nonlinearly with each other and their environments on multiple levels – and in the rich diversity of behavior of which they are capable. The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts, methods and tools of complex systems at all levels of description and in all scientific fields, especially newly emerging areas within the life, social, behavioral, economic, neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel applications of these ideas in various fields of engineering and computation such as robotics, nano-technology and informatics; third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leading to deeper insight and understanding. UCS will publish monographs, lecture notes and selected edited contributions aimed at communicating new findings to a large multidiscipl
Data Loading...