Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells

  • PDF / 3,208,229 Bytes
  • 13 Pages / 595.276 x 790.866 pts Page_size
  • 14 Downloads / 156 Views

DOWNLOAD

REPORT


Open Access

RESEARCH

Effects of H3.3G34V mutation on genomic H3K36 and H3K27 methylation patterns in isogenic pediatric glioma cells Tina Yi‑Ting Huang1, Andrea Piunti2, Jin Qi1, Marc Morgan2, Elizabeth Bartom2, Ali Shilatifard2 and Amanda M. Saratsis1,2,3* 

Abstract  Histone H3.3 mutation (H3F3A) occurs in 50% of cortical pediatric high-grade gliomas. This mutation replaces glycine 34 with arginine or valine (G34R/V), impairing SETD2 activity (H3K36-specific trimethyltransferase). Consequently, reduced H3K36me3 is observed on H3.3G34V nucleosomes relative to wild-type, contributing to genomic instabil‑ ity and driving a distinct gene expression signature associated with tumorigenesis. However, it is not known if this differential H3K36me3 enrichment is due to H3.3G34V mutant protein alone. Therefore, we set to elucidate the effect of H3.3G34V mutant protein in pediatric glioma on H3K36me3, H3K27me3 and H3.3 enrichment in vitro. We found that the doxycycline-inducible shRNA knockdown of mutant H3F3A encoding the H3.3G34V protein resulted in loss of H3.3G34V enrichment and increased H3K36me3 enrichment throughout the genome. After knockdown, H3.3G34V enrichment was preserved at loci observed to have the greatest H3.3G34V and H3K36me3 enrichment prior to knockdown. Induced expression of mutant H3.3G34V protein in vitro was insufficient to induce genomic H3K36me3 enrichment patterns observed in H3.3G34V mutant glioma cells. We also observed strong co-enrichment of H3.3G34V and wild-type H3.3 protein, as well as greater H3K27me3 enrichment, in cells expressing H3.3G34V. Taken together, our study demonstrates the effects of H3.3G34V mutant protein on genomic H3K36me3, H3K27me3 and H3.3 enrich‑ ment patterns in isogenic cell lines. Keywords:  Pediatric high-grade glioma, Post-translational modifications, H3K36me3, Histone H3 mutations Introduction Pediatric high-grade glioma (pHGG) is the number one cause of cancer death in children, with a 5-year survival of less than 20%. This dismal prognosis is in large part due to an historical lack of understanding of its distinct biology and the presumption that pHGG is biologically identical to its adult counterpart, resulting in ineffective treatment. However, with the development of next-generation sequencing technologies to analyze rare tumor *Correspondence: [email protected] 3 Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E Chicago Avenue, Box 28, Chicago, IL 60611‑2991, USA Full list of author information is available at the end of the article

specimens, knowledge of pHGG biology significantly increased over the past decade. Somatic missense mutations in genes encoding Histone H3 isoforms, including H3F3A, HIST1H3B and HIST1H3C, were subsequently identified in up to 50% of supratentorial hemispheric pHGG, and 80% of pediatric diffuse midline gliomas (DMG), a form of pHGG in the thalamus or brainstem [11, 15, 20]. These mutations are associated with distinct tumor biology and poorer clinical