Efficacy of spent tea waste as chemically impregnated adsorbent involving ortho-phosphoric and sulphuric acid for abatem
- PDF / 3,333,752 Bytes
- 19 Pages / 595.276 x 790.866 pts Page_size
- 69 Downloads / 149 Views
ADVANCES AND CHALLENGES FOR SUSTAINABLE ECOSYSTEMS
Efficacy of spent tea waste as chemically impregnated adsorbent involving ortho-phosphoric and sulphuric acid for abatement of aqueous phenol—isotherm, kinetics and artificial neural network modelling Uttarini Pathak 1 & Aastha Jhunjhunwala 1 & Ananya Roy 1 & Papita Das 2 & Tarkeshwar Kumar 3 & Tamal Mandal 1 Received: 11 March 2019 / Accepted: 22 July 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019
Abstract The current study emphasises on sorptive expulsion of phenol from aqueous solution using ortho-phosphoric acid (STAC-O) and sulphuric acid (STAC-H)-activated biochar derived from spent tea waste. STAC-O and STAC-H were instrumentally anatomised using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), BET surface area and thermal gravimetric analyser. Equilibrium and kinetic data were implemented for the investigative parametric batch study to prospect the influence of adsorbent dosage, contact time, initial concentration and pH for eradication of phenol from aqueous solution. The maximum phenolic removals by STAC-O and STAC-H are 93.59% and 91.024% respectively at the parametric conditions of adsorbent dosage 3 g/l time 2 h, initial phenol concentration 100 mg/l and pH 8. Non-linear regression of adsorption isotherms and kinetics was accomplished using the equilibrium data. Both the specimens were compared, and it delineated that Temkin isotherm model is contented. The maximum adsorption intakes for STAC-H and STAC-O were 185.002 mg/g and 154.39 mg/g respectively. Pseudo-second-order kinetic model was best fitted for portraying the chemisorption phenomena. Boyd kinetic and intra-particle diffusion model were investigated to elucidate the diffusion mechanism involved in the process. Desorption study was employed for determining the regeneration proficiency of the adsorbents using water, ethanol and NaOH with maximum 93% and 51.16% extrusion for STAC-O and STAC-H respectively. The process parameters involved in this study were further analysed using artificial neural network perusal to determine the input–output relationships and data pattern. The overall adsorption study along with cost estimation exhibited that bidirectional activation of spent tea biochar was prospective in abatement of phenol from aqueous media. Keywords Phenol . Adsorption . Spent tea waste . Artificial neural network . Desorption . Cost estimation
Introduction Phenol, a protoplasmic toxicant and important group of organic pollutants, remains a repugnant contaminant within the Responsible editor: Tito Roberto Cadaval Jr * Tamal Mandal [email protected] 1
Centre for Technological Excellence in Water Purification, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
2
Department of Chemical Engineering, Jadavpur University, Kolkata, India
3
Department of Petroleum Engineering, ISM Dhanbad, Dhanbad, Jharkhand, India
ecosystem. After releasing from coal and p
Data Loading...