Electron Spin Interactions in Chemistry and Biology Fundamentals, Me
This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energ
- PDF / 10,670,946 Bytes
- 355 Pages / 453.543 x 683.15 pts Page_size
- 77 Downloads / 162 Views
Gertz Likhtenshtein
Electron Spin Interactions in Chemistry and Biology Fundamentals, Methods, Reactions Mechanisms, Magnetic Phenomena, Structure Investigation
Electron Spin Interactions in Chemistry and Biology
BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING The fields of biological and medical physics and biomedical engineering are broad, multidisciplinary and dynamic. They lie at the crossroads of frontier research in physics, biology, chemistry, and medicine. The Biological and Medical Physics, Biomedical Engineering Series is intended to be comprehensive, covering a broad range of topics important to the study of the physical, chemical and biological sciences. Its goal is to provide scientists and engineers with textbooks, monographs, and reference works to address the growing need for information. Books in the series emphasize established and emergent areas of science including molecular, membrane, and mathematical biophysics; photosynthetic energy harvesting and conversion; information processing; physical principles of genetics; sensory communications; automata networks, neural networks, and cellular automata. Equally important will be coverage of applied aspects of biological and medical physics and biomedical engineering such as molecular electronic components and devices, biosensors, medicine, imaging, physical principles of renewable energy production, advanced prostheses, and environmental control and engineering.
Editor-in-Chief: Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Editorial Board: Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan Olaf S. Andersen, Department of Physiology, Biophysics and Molecular Medicine, Cornell University, New York, USA Robert H. Austin, Department of Physics, Princeton University, Princeton, New Jersey, USA James Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, England Howard C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA Victor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA Robert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA Britton Chance, University of Pennsylvania Department of Biochemistry/Biophysics Philadelphia, USA Steven Chu, Lawrence Berkeley National Laboratory, Berkeley, California, USA Louis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA Johann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, Texas, USA George Feher, Department of Physics, University of California, San Diego, La Jolla, California, USA Hans Frauenfelder, Los Alamos National Laboratory, Los Alamos, New Mexico, USA Ivar Giaever, Rensselaer Polytechnic Institute, Troy, New York, USA Sol M. Gruner, Cornell University, Ithaca, New York, USA Judith Herzfeld, Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
Mark S. Humayu
Data Loading...