Electrostatic Measurement of Plasma Plume Characteristics in Pulse Laser Ablated Carbon
- PDF / 441,917 Bytes
- 6 Pages / 420.48 x 639 pts Page_size
- 88 Downloads / 177 Views
ABSTRACT A triple Langmuir probe measurement has been implemented to investigate plasma plume character in low fluence (- 3.0 J/cm2 ) pulsed laser evaporation (PLE) discharges and has been found to be an extremely valuable tool. Absolute plasma plume density estimates are found to reside in the range 1.0 X 1013-2.0 x 1014 cm- 3 for vacuum pulses. A simple heavy particle streaming model for vacuum pulses allows estimates of the plume ionization fraction of •- 10%. This is consistent with typical deposition inventory suggesting that high kinetic energy ions play an important role in DLC film deposition. Electron temperature is found to consistently reside in the range 0.5-3.0 eV, and appears to be uninfluenced by operating conditions and large variations in Ar and N2 fill gas pressure. Consistent with strong plume ion and neutral particle coupling to the background fill, constancy of Te suggests expulsion of background gas by the energetic plume. The leading edge ion plume speed is measured via temporal displacement of spatially separated probe signals on consecutive PLE pulses. Flow speeds as high as 5.0 x 104 m/s are observed, corresponding to -, 156 eV in C+. The ion flow speed is found to be a strongly decreasing function of fill pressure from an average high of - 126 eV in vacuum to - 0.24 eV at 600 mTorr N2. Raman scattering spectroscopy indicates DLC film quality also degrades with fill pressure suggesting the importance of high ion kinetic energy in producing good quality films. Optical emission indicates an increase in C2 molecular light intensity with fill gas pressure implying a reduced, if any, role of these species in DLC production. Ion current signal anomalies in high pressure pulses indicate the formation of high mass carbon clusters during plume evolution in the presence of background gas. Mass diffusivity estimates, based on density decay, suggest the presence of C' under these conditions. Demonstration and control of such cluster formation may provide method(s) for controlling novel advanced materials properties. INTRODUCTION Pulsed Laser Deposition (PLD) has evolved as a standard technique in the growth of a wide variety of thin films[I-5]. High deposition rate, low levels of contamination, stoichiometry preservation, and high quality film generation at low process temperature are among the many advantages in employing Pulsed Laser Evaporation (PLE) for deposition which lends itself to fabrication of multilayer and multicomponent stoichiometric composites including nano-crystalline materials[5], epitaxial superconducting films[I,4,6,7] without post annealing[3] particularly YBCO (YBa 2Cu 3O, 123 material), and diamond-like-carbon film production[2,5] at room temperature. Hydrogen-free, tetrahedral amorphous carbon (ta-C) with up to 80% sp 3 bonded carbon has been reported[8]. These films exhibit high electrical resistivity, low friction, optical transparency, chemical inertness, and density and hardness approaching that of diamond[5,8,9]. The ability to produce such high quality DLC films depends
Data Loading...