Embedded System Design

Until the late eighties, information processing was associated with large mainframe computers and huge tape drives. During the nineties, this trend shifted towards information processing with personal computers, or PCs. The trend towards miniaturization c

  • PDF / 2,012,037 Bytes
  • 249 Pages / 453.551 x 680.312 pts Page_size
  • 51 Downloads / 254 Views

DOWNLOAD

REPORT


Embedded System Design by

PETER MARWEDEL University of Dortmund, Germany

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 ISBN-13 ISBN-10 ISBN-13 ISBN-10 ISBN-13

0-387-29237-3 (PB) 978-0-387-29237-3 (PB) 1-4020-7690-8 (HB) 978-1-4020-7690-9 (HB) 0-387-30087-2 ( e-book) 978-0-387-30087-0 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springeronline.com

Printed on acid-free paper

All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands.

This book is dedicated to my family.

Contents

Preface

xiii

Acknowledgments

xvii

1. INTRODUCTION

1

1.1

Terms and scope

1

1.2

Application areas

5

1.3

Growing importance of embedded systems

8

1.4

Structure of this book

9

2. SPECIFICATIONS

13

2.1

Requirements

13

2.2

Models of computation

16

2.3

StateCharts

18

2.3.1

Modeling of hierarchy

19

2.3.2

Timers

23

2.3.3

Edge labels and StateCharts semantics

24

2.3.4

Evaluation and extensions

26

2.4

General language characteristics

27

2.4.1

Synchronous and asynchronous languages

27

2.4.2

Process concepts

28

2.4.3

Synchronization and communication

28

vii

viii

EMBEDDED SYSTEM DESIGN

2.4.4

Specifying timing

29

2.4.5

Using non-standard I/O devices

30

2.5

SDL

30

2.6

Petri nets

36

2.6.1

Introduction

36

2.6.2

Condition/event nets

40

2.6.3

Place/transition nets

40

2.6.4

Predicate/transition nets

42

2.6.5

Evaluation

44

2.7

Message Sequence Charts

44

2.8

UML

45

2.9

Process networks

50

2.9.1

Task graphs

50

2.9.2

Asynchronous message passing

53

2.9.3

Synchronous message passing

55

2.10 Java

58

2.11 VHDL

59

2.11.1 Introduction

59

2.11.2 Entities and architectures

60

2.11.3 Multi-valued logic and IEEE 1164

62

2.11.4 VHDL processes and simulation semantics

69

2.12 SystemC

73

2.13 Verilog and SystemVerilog

75

2.14 SpecC

76

2.15 Additional languages

77

2.16 Levels of hardware modeling

79

2.17 Language comparison

82

2.18 Dependability requirements

83

Contents

ix

3. EMBEDDED SYSTEM HARDWARE

87

3.1

Introduction

87

3.2

Input

88

3.3

3.4

3.2.1

Sensors

88

3.2.2

Sample-and-hold circuits

90

3.2.3

A/D-converters

91

Communication

93

3.3.1

Requirements

94

3.3.2

Electrical robustness

95

3.3.3

Guaranteeing real-time behavior

96

3.3.4

Examples

97

Processing Units

98

3.4.1

Overview

98

3.4.2

Application-Specific Circuits (ASICs)

100

3.4.3

Processors

100

3.4.4

Reconfigurable Logic

115

3.5

Memories

118

3.6

Output

120

3.6.1

D/A-converters

121

3.6.2

Actuators

122

4. EMBEDDED OPERATING SYSTEMS, MIDDLEW