Endopolyploidy in Plants
Plant growth and development is precisely programmed and achieved through three processes: cell division (proliferation), growth and differentiation. These three processes may overlap during plant organ development, when some cells start to differentiate
- PDF / 775,945 Bytes
- 21 Pages / 595.276 x 790.866 pts Page_size
- 9 Downloads / 145 Views
Endopolyploidy in Plants Jolanta Maluszynska, Bozena Kolano, and Hanna Sas-Nowosielska
Contents 7.1 7.1.1 7.1.2 7.1.3
7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Definition and Types of Endopolyploidy . . . . . . . . . . . . . . . . . 99 Polysomatic and Non-polysomatic Plants . . . . . . . . . . . . . . . . . 101 Pattern of Endoreduplication: Polysomaty . . . . . . . . . . . . . . . . 101
7.2 Molecular Mechanisms of Endoreduplication . . . . . . . . . 7.2.1 Endoreplication Onset: Transition from Mitotic Cell Cycle to Endocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 DNA Replication in the Endocycle . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Endocycle Regulatory Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 Factors Involved in Endopolyploidy Modulation . . . . . . . . .
102 102 103 105 106
7.3
Structure of the Endopolyploid Plant Nucleus . . . . . . . . 108
7.4 7.4.1 7.4.2 7.4.3 7.4.4
Occurrence of Endopolyploidy . . . . . . . . . . . . . . . . . . . . . . . . . . Endopolyploidy in Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Life Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Endopolyploidy in Generatively Polyploid Plants . . . . . . . . Endopolyploidy in Plant Development . . . . . . . . . . . . . . . . . . . .
7.5
Polysomatic and Non-polysomatic Plants in Culture In Vitro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6
Methods to Analyse Endopolyploidy . . . . . . . . . . . . . . . . . . . . 114
108 108 109 109 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Plant growth and development is precisely programmed and achieved through three processes: cell division (proliferation), growth and differentiation. These three processes may overlap during plant organ development, when some cells start to differentiate while others continue to divide e.g., leaf epidermal cells (Harashima and Schnittger 2010). Dividing cells, called meristematic cells, increase their number and supply new cells for post-embryonic plant development. Outside the meristems non-dividing cells expand and differentiate. Cell proliferation and expansion result in varied but determined cell sizes specific for the plant, organ and tissue. The next phase in plant development is cell-type specification along with the differentiation processes. The control of all processes and the determination of final cell mass and size are poorly understood but there is increasing knowledge about the molecular mechanisms underpinning the regulatory systems. Cell sizes in plants are usually closely related to their function. There are two strategies to enlarge cell size: one is based on water uptake and vacuolar growth and the other is to increase the nuclear DNA conte
Data Loading...