Engineering Simulations as Scientific Instruments: A Pattern Language
This book describes CoSMoS (Complex Systems Modelling and Simulation), a pattern-based approach to engineering trustworthy simulations that are both scientifically useful to the researcher and scientifically credible to third parties. This approach emphas
- PDF / 4,846,048 Bytes
- 356 Pages / 439.42 x 683.15 pts Page_size
- 21 Downloads / 197 Views
ineering Simulations as Scientific Instruments: A Pattern Language With Kieran Alden, Paul S. Andrews, James L. Bown, Alastair Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis, Alan F.T. Winfield
Engineering Simulations as Scientific Instruments: A Pattern Language
Susan Stepney • Fiona A.C. Polack
Engineering Simulations as Scientific Instruments: A Pattern Language With Kieran Alden, Paul S. Andrews, James L. Bown, Alastair Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis, Alan F.T. Winfield
Susan Stepney Dept. of Computer Science University of York York, UK
Fiona A.C. Polack School of Computing and Mathematics Keele University Newcastle-under-Lyme, UK
Written in collaboration with Kieran Alden, Paul S. Andrews, James L. Bown, Alastair Droop, Richard B. Greaves, Mark Read, Adam T. Sampson, Jon Timmis and Alan F.T. Winfield. ISBN 978-3-030-01937-2 ISBN 978-3-030-01938-9 (eBook) https://doi.org/10.1007/978-3-030-01938-9 Library of Congress Control Number: 2018961032 © Springer Nature Switzerland AG 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface
Computer-based simulation is a key tool in many fields of scientific research. In silico experiments can be used to explore and understand complex processes, to guide and complement in vitro and in vivo experiments, to suggest new hypotheses to investigate, and to predict results where experiments are infeasible. Simulation is an attractive, accessible tool: producing new simulations of simple systems is relatively easy. But it is also a dangerous one: simulations (and their underlying models) are often complex, buggy, and difficult to relate to the real world system. A recent UK Government report on
Data Loading...