Epigenetic Mechanisms of Pituitary Cell Fate Specification

Pituitary progenitor or stem cells present in the pituitary primordium during development are the source of hormone-producing cells of the adult pituitary. These stem cells are maintained in the adult tissue and they can be recruited to maintain or replen

  • PDF / 2,854,981 Bytes
  • 163 Pages / 439.42 x 683.15 pts Page_size
  • 31 Downloads / 216 Views

DOWNLOAD

REPORT


Donald Pfaff Yves Christen Editors

Stem Cells in Neuroendocrinology

Research and Perspectives in Endocrine Interactions

More information about this series at http://www.springer.com/series/5241

Donald Pfaff • Yves Christen Editors

Stem Cells in Neuroendocrinology

Editors Donald Pfaff Department of Neurobiology & Behavior The Rockefeller University New York, New York USA

Yves Christen Fondation Ipsen Boulogne Billancourt France

ISSN 1861-2253 ISSN 1863-0685 (electronic) Research and Perspectives in Endocrine Interactions ISBN 978-3-319-41602-1 ISBN 978-3-319-41603-8 (eBook) DOI 10.1007/978-3-319-41603-8 Library of Congress Control Number: 2016946609 © The Editor(s) (if applicable) and The Author(s) 2016. This book is published open access. Open Access This book is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated. The images or other third party material in this book are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

Introduction

Techniques for manipulating neural systems in general and neuroendocrine systems in particular have matured greatly compared to the era in which nerve cell destruction and electrical stimulation provided our main tools. In theory, nerve cell groups connected with hormonal systems should offer strategic advantages to the stem cell biologist because of the wealth of chemically understood regulatory steps to exploit. While the current volume cannot provide a comprehensive review of the quickly evolving applications of stem cell biology, it does provide a first view of some of the early successes and new possibilities. For example, the striking successes o