Ergodic Theory and Statistical Mechanics
- PDF / 7,900,958 Bytes
- 154 Pages / 468 x 683.759 pts Page_size
- 56 Downloads / 253 Views
1115 Jean Moulin Ollagnier
Erqodic Theory and Statistical Mechanics
Spri nqer-Verlaq Berlin Heidelberg New York Tokyo
Author
Jean Moulin Ollagnier Departernent de Mathematiques, Universite Paris Nord Avenue J. B. Clement, 93430 Villetaneuse, France
AMS Subject Classification (1980): 20F, 28D, 54H20, 82A05, 82A25 ISBN 3-540-15192-3 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15192-3 Springer-Verlag New York Heidelberg Berlin Tokyo
This work IS subject to copyriqnt. All rights are reserved, whether the whole or part at the material is concerned, specitically those at translation, reprinting, re-use at illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 at the German Copyright Law where copies are made tor other than private use, a tee is payable to "Verwertungsgesellschatt Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Oftsetdruck, Hemsbach/Bergstr. 2146/3140-543210
CONTENTS
v
INTRODUCTION 1. PRELIMINARY ANALYSIS 1.1. Sublinear functions and the Hahn-Banach theorem 1.2. Compact convex sets 1.3. Radon measures 1.4. Extremal points in compact convex sets 1.5. References
. . . . . .
2. DYNAMICAL SYSTEMS AND AMENABLE GROUPS 2.1. Dynamical sys tems 2.2. The fixed point property and the ameaning filter 2.3. Amenability and algebraic constructions '" 2.4. References
. .
1 4
6
10 14 15 15
19
. .
3. ERGODIC THEOREMS . 3.1. Invariant linear functionals . 3.2. Invariant vectors and mean ergodic theorems . 3.3. Individual ergodic theorems . 3.4. The saddle ergodic theorem . 3.5. References ........................................................................................ 4. ENTROPY OF ABSTRACT DYNAMICAL SYSTEMS 4.1. Equivalence of abstract dynamical systems .. , 4.2. Entropy of partitions 4.3. Entropy of dynamical systems 4.4. The almost subadditive ergodic theorem and the Shannon-McMillan theorem 4.5. References
1
30 33
35 35 41
47 50
52
. . . .
53
. .
64
53 54 59
70
IV
5. ENTROPY AS A FUNCTION AND THE VARIATIONAL PRINCIPLE 5.1. Topological entropy
71 71
5.2. Pressure of a continuous function and the variational principle 72 5.3. Entropy as a function of the measure
..
82
5.4. References
85
6. STATISTICAL MECHANICS ON A LATTICE ..
86
6.1. Local specifications and Gibbs measures
86
6.2. Cocycles and quasi-invariant measures ...............•
91
6.3. Phase transitions....................................
96
6.4. Supermodular interactions
98
6.5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . 7. DYNAMICAL SYSTEMS IN STATISTICAL MECHANICS
104 105
7.1. Invariant local specifications
105
7.2. Invariant Gibbs measures and equilibrium measures
106
7.3. Mixing properties
108
7.4. Example: a theorem of Ruelle's
112
7.5. References
115
8. EQUIVALENCE OF COUNTABLE AMENABLE GROUPS ..
117
8.1. Tiling amenable groups
117
8.2. Equivalence of countable groups.
124
8.3. Rokhl in' s
Data Loading...