Ergodic Theory on Compact Spaces

  • PDF / 16,618,610 Bytes
  • 367 Pages / 461 x 684 pts Page_size
  • 110 Downloads / 259 Views

DOWNLOAD

REPORT


527 Manfred Denker Christian Grillenberger Karl Sigmund

Ergodic Theory on Compact Spaces

Springer-Verlag Berlin· Heidelberg· New York 1976

Lecture Notes in Mathematics Edited by A. Dold and B. Eckmann

527 Manfred Denker Christian Grillenberger Karl Sigmund

Ergodic Theory on Compact Spaces

Springer-Verlag Berlin· Heidelberg· New York 1976

Authors Manfred Denker Christian Grillenberger Institut fur Mathematische Statistik LotzestraBe 13 0-3400 Gottinqen

Karl Sigmund Mathematisches Institut Strudlhofgasse 4 A-1090 Wi en

Library of Congress Cataloging in Publication Data

Denker, Manfred, 1944-

Ergodic theory on compact spaces.

(Lecture notes in mathematics ; vol. 527) Bibliography: p. Includes index. 1. Topological dynamics. 2. Ergodic theory. 3. Metric spaces. 4. Locally compact spaces. I. Grillenberger, Christian, 1941joint author. II. Sigmund, Karl, 1945joint author. III. Title. IV. Series: Lecture notes in mathematics (Berlin) ; vol. 527. QA3.I28 vol. 527 [QA6l1.5] 5l0'.8s [514'.3] 76-19105

AMS Subject Classifications (1970): 28A50, 28A65, 54H20 ISBN 3-540-07797-9 Springer-Verlag Berlin' Heidelberg' New York ISBN 0-387-07797-9 Springer-Verlag New York' Heidelberg' Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin' Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

1.

Measure Theoretical Dynamical Systems.............

3

2.

Measures on Compact Metric Spaces.................

8

3.

Invariant Measures for Continuous Transformations

17

4.

Time Averages

20

5.

Ergodici ty

'. . . . . . . . . . . . . . . . . . . . . .

23

6.

Mixing and Transitivity •.•.•.•..••••..••.....••.••

30

7.

Shifts and Sub shifts • • • • . . • • . • . • • • • • . . . • . • . . . . • • • •

36

8.

Measures on the Shift Space .••••..........•..••.•

41

9.

Partitions and Generators •.••.•••.•..••••.••.•.•.•

49

10.

Information and Entropy •..•.••••••••••••.••••••.••

56

11.

Computation of Entropy ...•••.••••....••.•.....••••

62

12.

Entropy for Bernoulli- and Markov Shifts .••.•••••

68

13.

Ergodic Decompositions ••.•••••••••..••••..•.••••.•

73

14.

Topological Entropy...............................

82

15.

Topological Generators .•..•..•..••••..•••....•...•

92

16.

Expansive Homeomorphisms ...•.•..•.•••••••••..••••• 103

17.

Subshifts of Finite Type •.•.•••.•••....•.....••.•• 117

18.

Variational Principle for Topological Entropy ••••• 131

19.

Measures with Maximal Entropy Intrinsically