Feast: Choking on Acetyl-CoA, the Glyoxylate Shunt, and Acetyl-CoA-Driven Metabolism

Acetyl-coenzyme A (Acetyl-CoA) is an essential cofactor in central metabolism: the molecule is the entry point to the tricarboxylic acid (TCA) cycle that generates biomass, energy, and intermediates for macromolecules. Its importance is not limited to bio

  • PDF / 159,522 Bytes
  • 12 Pages / 439.37 x 666.142 pts Page_size
  • 28 Downloads / 171 Views

DOWNLOAD

REPORT


1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1650 2 Acetyl-CoA Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1650 3 Coenzyme A (CoASH) Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1653 4 Acetyl-CoA Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1653 5 Regulation of Acetate Metabolism – The Acetate Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 1656 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657 7 Research Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657 8 Financial Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657

K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_116, # Springer-Verlag Berlin Heidelberg, 2010

1650

60

Feast: Choking on Acetyl-CoA, the Glyoxylate Shunt, and Acetyl-CoA-Driven Metabolism

Abstract: Acetyl-coenzyme A (Acetyl-CoA) is an essential cofactor in central metabolism: the molecule is the entry point to the tricarboxylic acid (TCA) cycle that generates biomass, energy, and intermediates for macromolecules. Its importance is not limited to biosynthetic pathways: the oxidation of carbohydrates (via pyruvate), fatty acids (by the b-oxidation cycle), or aromatics (by various pathways) all produce acetyl-CoA as an endpoint of catabolism. Acetyl-CoA is also produced by the direct assimilation of acetate. The TCA cycle is a very efficient way to convert the acetyl-CoA pool into biomass and energy, and it results in the evolution of two CO2 molecules. Growth on acetate, fatty acids, or aromatics requires the activation of the glyoxylate shunt and gluconeogenesis pathways. By converting isocitrate to malate and bypassing half the TCA cycle, these two carbons are retained at the expense of energy production (> Fig. 1). During fast growth in glucose or tryptone-based medium, E. coli and several other organisms excrete acetate to regenerate NAD+ and to recycle coenzyme A. The acetate acidifies the medium and can repress the production of both native and heterologous proteins. Upon depletion of other carbon sources the cells then retool their metabolism to re-activate acetate to acetyl-CoA, the canonical ‘‘acetate switch.’’ Finally, the excess acetylCoA can be harnessed for commercial interest through native or engineered pathways to produce fatty acids, bioplastics, pharmaceuticals, or biofuels.

1

Introduction

Acetyl-CoA is perhaps the most central molecule of metabolism