Flexible Electronics: From Materials to Devices Guozhen Shen and Zhiyong Fan, Editors

  • PDF / 491,672 Bytes
  • 2 Pages / 585 x 783 pts Page_size
  • 69 Downloads / 182 Views

DOWNLOAD

REPORT


Chapter 4 reviews the effects of severe plastic deformation and cyclic loading on nanostructure formation and phase transformation. This chapter also explores the challenge of achieving high density while retaining nanostructural features during processing under extreme loads and high temperatures. Chapter 5 discusses the effects of corrosion on nanomaterials. The behavior of a variety of alloys and high melting point compounds in liquid media and high-temperature oxidizing environments is reviewed. The concluding chapter identifies areas for further research. Each chapter ends with a section on applications and a long list of references. The book has more than 50 plots, micrographs, and schematic diagrams.

Flexible Electronics: From Materials to Devices Guozhen Shen and Zhiyong Fan, Editors World Scientific, 2016 476 pages, $178.00 (e-book $142.00) ISBN 978-981-4651-98-1

T

his book gives an excellent introduction to flexible electronics, which refers to the science and technology of using flexible materials for manufacturing electronic circuits and optoelectronic devices. Flexible electronics enables wrapping devices into desired shapes and allows compact and efficient layouts to be created. It is considered the next generation of microelectronics, very promising for practical applications in wearable products. The authors present a comprehensive review of the field, aiming to understand this advanced science and engineering paradigm, which has enormous potential. The book comprises 10 chapters, which provide a detailed introduction of flexible electronics with typical materials and devices. Chapter 1 presents an overview of flexible electronics based on carbon nanotubes. Chapter 2 introduces various nanomaterial-based flexible sensors. Chapter 3 reviews the synthesis, properties, and applications of graphene

in flexible electronics. Chapter 4 goes into high-performance flexible electronic circuits by integrating nanowires such as IV, II–VI, and III–V semiconducting nanowires. Chapter 5 focuses on electronic and optoelectronic devices based on graphene for high-frequency electronics and THz technology. Chapter 6 is concerned with the design of nanostructures for flexible energy conversion and storage, including photovoltaic cells, lithium-ion batteries, and supercapacitors. Chapter 7 deals with next-generation flexible solar cells, such as dye-sensitized, organic, and perovskite solar cells. Chapter 8 illustrates flexible solar cells, with an emphasis on inorganic, organic, and organic–inorganic solar cells. Chapter 9 covers recent advances in fiber supercapacitors based on various nanostructures. Chapter 10 discusses flexible electronic devices based on electrospun microfibers and nanofibers with stretchable behaviors. References are listed at the

The book would have benefited from more careful copy editing of the English language. Moreover, although a list of acronyms is provided at the front of the book, the excessive use of acronyms makes the text difficult to read. However, the integration of theoretical