Formation Control of Non-holonomic Mobile Robots - Tuning the Algorithm

This paper presents the tuning methodology for the system of multiple two-wheeled mobile robots moving in formation. The procedure was applied to the trajectory tracking algorithm combined with collision avoidance based on the Artificial Potential Functio

  • PDF / 180,454,856 Bytes
  • 1,559 Pages / 439.37 x 666.142 pts Page_size
  • 14 Downloads / 210 Views

DOWNLOAD

REPORT


Andrzej Bartoszewicz Jacek Kabziński Janusz Kacprzyk   Editors

Advanced, Contemporary Control Proceedings of KKA 2020—The 20th Polish Control Conference, Łódź, Poland, 2020

Advances in Intelligent Systems and Computing Volume 1196

Series Editor Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland Advisory Editors Nikhil R. Pal, Indian Statistical Institute, Kolkata, India Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba Emilio S. Corchado, University of Salamanca, Salamanca, Spain Hani Hagras, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil Ngoc Thanh Nguyen , Faculty of Computer Science and Management, Wrocław University of Technology, Wrocław, Poland Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong

The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia. The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicab