Function Theory on Manifolds Which Possess a Pole
- PDF / 6,291,954 Bytes
- 219 Pages / 461 x 684 pts Page_size
- 16 Downloads / 199 Views
		    699
 
 R. E. Greene H. Wu
 
 Function Theory on Manifolds Which Possess a Pole
 
 Springer-Verlag Berlin Heidelberg New York 1979
 
 Authors
 
 R. E. Greene Department of Mathematics University of California Los Angeles, CA 90024/USA H. Wu Department of Mathematics University of California Berkeley, CA 94?20/USA
 
 AMS Subject Classifications (1970): Primary: 53C55, 32C10, 32F99, 35N15 Secondary: 53C20, 58G99, 32 F15, 32H20, 32 H10, 30A48 ISBN ISBN
 
 3-540-09108-4 0-38?-09108-4
 
 Springer-Verlag Berlin Heidelberg New York Springer-Verlag New York Heidelberg Berlin
 
 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the pub~sher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210
 
 CONTENTS
 
 O.
 
 Introduction
 
 I.
 
 Preliminaries
 
 2.
 
 The
 
 Hessian
 
 Theorem 3.
 
 A
 
 4.
 
 5.
 
 I
 
 ...........................................
 
 5
 
 Comparison
 
 B
 
 Theorem
 
 Subharmonic
 
 Functions
 
 ........
 
 the Exponential Map and the Absence Functions .............................
 
 43 43
 
 of 56
 
 ...............................................
 
 56
 
 Theorem
 
 D
 
 ...............................................
 
 57
 
 Criterion E
 
 Appendix Bounded K~hler
 
 of
 
 Hyperbolicity
 
 ..........................
 
 81
 
 ...............................................
 
 83
 
 ................................................
 
 94
 
 Exhaustion Manifolds
 
 Functions and a New .......................
 
 Class of Hyperbolic ; ................
 
 99
 
 Theorem
 
 F
 
 ...............................................
 
 99
 
 Theorem
 
 G
 
 ...............................................
 
 111
 
 A
 
 Digression
 
 Appendix The
 
 ............................................
 
 ................................................
 
 Bergman
 
 Theorem 9.
 
 for
 
 19
 
 C
 
 Theorem
 
 8.
 
 19
 
 Theorem
 
 New
 
 7.
 
 ..........................
 
 ...............................................
 
 Quasi-isometry of Positive Harmonic
 
 6.
 
 Theorem
 
 ...............................................
 
 Sub-mean-value Theorem
 
 ............................................
 
 H
 
 Manifolds Theorem
 
 Bibliography
 
 J
 
 Metric
 
 ......................................
 
 116 136 141
 
 ...............................................
 
 144
 
 Biholomorphic
 
 180
 
 to
 
 Cn
 
 ...........................
 
 ...............................................
 
 180
 
 ................................................
 
 206
 
 Index
 
 .......................................................
 
 211
 
 Index
 
 of
 
 214
 
 Special
 
 Notations
 
 ..................................
 
 0.
 
 Introduction
 
 This paper studies the function theory of Cartan-Hadamard manifolds, i.e., complete
 
 simply-connected
 
 tional curvature.
 
 Rieman		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	