Function Theory on Manifolds Which Possess a Pole

  • PDF / 6,291,954 Bytes
  • 219 Pages / 461 x 684 pts Page_size
  • 16 Downloads / 171 Views

DOWNLOAD

REPORT


699

R. E. Greene H. Wu

Function Theory on Manifolds Which Possess a Pole

Springer-Verlag Berlin Heidelberg New York 1979

Authors

R. E. Greene Department of Mathematics University of California Los Angeles, CA 90024/USA H. Wu Department of Mathematics University of California Berkeley, CA 94?20/USA

AMS Subject Classifications (1970): Primary: 53C55, 32C10, 32F99, 35N15 Secondary: 53C20, 58G99, 32 F15, 32H20, 32 H10, 30A48 ISBN ISBN

3-540-09108-4 0-38?-09108-4

Springer-Verlag Berlin Heidelberg New York Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the pub~sher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

CONTENTS

O.

Introduction

I.

Preliminaries

2.

The

Hessian

Theorem 3.

A

4.

5.

I

...........................................

5

Comparison

B

Theorem

Subharmonic

Functions

........

the Exponential Map and the Absence Functions .............................

43 43

of 56

...............................................

56

Theorem

D

...............................................

57

Criterion E

Appendix Bounded K~hler

of

Hyperbolicity

..........................

81

...............................................

83

................................................

94

Exhaustion Manifolds

Functions and a New .......................

Class of Hyperbolic ; ................

99

Theorem

F

...............................................

99

Theorem

G

...............................................

111

A

Digression

Appendix The

............................................

................................................

Bergman

Theorem 9.

for

19

C

Theorem

8.

19

Theorem

New

7.

..........................

...............................................

Quasi-isometry of Positive Harmonic

6.

Theorem

...............................................

Sub-mean-value Theorem

............................................

H

Manifolds Theorem

Bibliography

J

Metric

......................................

116 136 141

...............................................

144

Biholomorphic

180

to

Cn

...........................

...............................................

180

................................................

206

Index

.......................................................

211

Index

of

214

Special

Notations

..................................

0.

Introduction

This paper studies the function theory of Cartan-Hadamard manifolds, i.e., complete

simply-connected

tional curvature.

Rieman