Global positive solution to a semi-linear parabolic equation with potential on Riemannian manifold

  • PDF / 391,069 Bytes
  • 24 Pages / 439.37 x 666.142 pts Page_size
  • 51 Downloads / 185 Views

DOWNLOAD

REPORT


Calculus of Variations

Global positive solution to a semi-linear parabolic equation with potential on Riemannian manifold Qingsong Gu1,2 · Yuhua Sun3 · Jie Xiao2 · Fanheng Xu4 Received: 23 December 2019 / Accepted: 31 July 2020 / Published online: 15 September 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract This paper determines when the Cauchy problem 

∂t u = u − V u + W u p u(·, 0) = u 0 (·)

in M × (0, ∞) in M

has no global positive solution on a connected non-compact geodesically complete Riemannian manifold for a given triple (V , W , p). As the principal result of this paper, Theorem 1.1 optimally extends in a unified way most of the previous results in this subject (cf. Ishige in J Math Anal Appl 344:231–237, 2008; Pinsky in J Differ Equ 246(6):2561–2576, 2009; Zhang in Duke Math J 97:515–539, 1999; Zhang in J Differ Equ 170:188–214, 2001). Mathematics Subject Classification Primary: 58J35 · Secondary: 35K10

Communicated by A. Malchiodi. Yuhua Sun (+ Fanheng Xu) was supported by the National Natural Science Foundation of China (#11501303 - #11871296) and Tianjin Natural Science Foundation (#19JCQNJC14600); Jie Xiao (+ Qingsong Gu) was supported by NSERC of Canada (#20171864).

B

Yuhua Sun [email protected] Qingsong Gu [email protected] Jie Xiao [email protected] Fanheng Xu [email protected]

1

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

2

Department of Mathematics and Statistics, Memorial University, St. John’s, NL A1C 5S7, Canada

3

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China

4

School of Mathematics (Zhuhai), Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, People’s Republic of China

123

170

Page 2 of 24

Q. Gu et al.

Contents 1 Introduction . . . . . . . . . . . . 1.1 Stating Theorem 1.1 . . . . . . 1.2 Transforming Theorem 1.1 . . 2 Verification . . . . . . . . . . . . . 2.1 Proving Theorem 1.1(i) . . . . 2.2 Proving Theorem 1.1(ii) . . . . 3 Illustration . . . . . . . . . . . . . 3.1 Exemplifying Theorem 1.1(i) . 3.2 Exemplifying Theorem 1.1(ii) References . . . . . . . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

2 2 4 7 7 15 18 18 23 23

1 Introduction 1.1 Stating Theorem 1.1 Working on a connected non-compact geodesically complete Riemannian manifold