Grasping vs. Manipulating

In this chapter, an introduction to the current state of the art of robotic hands and some background on the grasping/manipulation theory is proposed. Most robots are nowadays based on a serial architecture with six or seven axes that allow them to perfor

  • PDF / 6,759,503 Bytes
  • 25 Pages / 430 x 660 pts Page_size
  • 22 Downloads / 275 Views

DOWNLOAD

REPORT


Finger-wise, boll-wise. Jes’ move along talkin’, an’ maybe singin’ till the bag gets heavy. Fingers go right to it. Fingers know. Eyes see the work—and don’t see it. John Steinbeck, The Grapes of Wrath, 1939. in which an introduction to the state of the art robotic hands is presented with a particular emphasis placed on the grasping/manipulating dilemma. Several characteristics of the best known robotic hands are presented and discussed. Common issues on grasping and manipulation are reviewed as well as different solutions proposed in the literature. Finally, the concept of underactuation in robotic fingers, a powerful and “novel” technique—leading to shape adaptation through the use of ingenious designs— is introduced to conclude this chapter.

2.1 Robotic Hands: Aims and Functions grasp. Function: verb. Etymology: Middle English graspen. Intransitive senses: to make the motion of seizing: clutch. Transitive senses, 1: to take or seize eagerly, 2: to clasp or embrace especially with the fingers or arms, 3: to lay hold of with the mind. manipulate. Function: transitive verb. Etymology: back-formation from manipulation, from French, from manipuler to handle an apparatus in chemistry, ultimately from Latin manipulus. 1: to treat or operate with the hands or by mechanical means especially in a skillful manner, 2a: to manage or utilize skillfully, b: to control or play upon by artful, unfair, or insidious means especially to one’s own advantage, 3: to change by artful or unfair means so as to serve one’s purpose.

Merriam Webster’s Collegiate Dictionnary, tenth edition, 2000. L. Birglen, T. Lalibert´ e, & C. Gosselin: Underactuated Robot. Hands, STAR 40, pp. 7–31, 2008. c Springer-Verlag Berlin Heidelberg 2008 springerlink.com 

8

Grasping vs. Manipulating

In this chapter, an introduction to the current state of the art of robotic hands and some background on the grasping/manipulation theory is proposed. Most robots are nowadays based on a serial architecture with six or seven axes that allow them to perform numerous tasks such as pick-and-place, camera inspection, or assembly. These robots can work in hazardous and/or hostile environments without putting human lives in jeopardy. Nevertheless, the dexterity of robots, i.e., their ability to perform highly precise operations with visual/perceptual/tactile feedback, has always been clearly more limited than that of a well-trained human being. To overcome this limitation, numerous research initiatives have been conducted in the past to create robotic end-effectors that can match the human hand in terms of performance and versatility. These devices have been referred to as robotic hands and many research laboratories around the world have developed prototypes of such hands as early as in the mid 1980’s when the foundations of these studies were laid (Mason and Salisbury 1985). However, the idea of copying the human hand is actually much older and may be contemporary of the first automata in the 18th century, e.g., La Musicienne of the inventor Jacquet-Droz (Rosheim 1994). T