Handbook of Elliptic Integrals for Engineers and Scientists

Engineers and physicists are more and more encountering integrations involving nonelementary integrals and higher transcendental functions. Such integrations frequently involve (not always in immediately re­ cognizable form) elliptic functions and ellipti

  • PDF / 3,656,863 Bytes
  • 32 Pages / 439 x 666 pts Page_size
  • 67 Downloads / 256 Views

DOWNLOAD

REPORT


Recurrence Formulas for the Integrals of the Twelve Jacobian Elliptic Functions. Integrals of odd powers of the twelve Jacobian functions, it is to be noted, are expressible solely in terms of Jacobian elliptic functions and more elementary functions, while the evaluation of integrals of even powers requires in addition the two functions E(u) and u.

A =f m

t m dt

V(1-t2)(1-k2t2)

=f sinmtp dtp

V1-k 2 sin 2cp

=fsnm u du

[t = sin q:> = sn u].

310.00

Ao = J du = u = F(q:>, k),

310.01

Al = J sn udu =-i- In (dnu-kcnu) = - ~ cosh-I [(dnu)/k'].

310.02

A2

=Jsn 2 udu = ~2- [u - E(u)] ,

310.03

A3

=Jsn3 udu =~ [kcnudnu + (1+ k 2 ) In (dnu - kcnu)].

[q:>=amu].

[E(u)

=

E(q:>, k)J.

2k

1 With all the following indefinite integrals, the constant of integration is to be understood. Moreover, for brevity we write E(u) for E(am u, k).

P. F. Byrd et al., Handbook of Elliptic Integrals for Engineers and Scientists © Springer-Verlag Berlin · Heidelberg 1971

Table of Integrals of Jacobian Elliptic Functions.

192

310.04

{A4

310.05 A

J sn 4udu=

=

_

2",+2-

3~4

[(2+k 2) u- 2(1+k2)E(u) + + k 2 sn u en udnuJ.

sn2m-lucnudnu+2m(1+k2)A2m+(1-2m)A2m_2 (2m+1)k2 •

_ sn·'" u cn u dn u + (2m + 1) (1 + k 2 ) A' m+1 - 2mA''''_1 310.06 A 2m+32(m+1)k2

B

m

-J

=

t"'dt -J drp V(t2 -1) (t 2 - k 2) sin"'cp V1- k 2 sin2rp

=Jns"'udu,

[t = 1/sinp = nsuJ.

311.00 Bo= Jdu=u=F(p,k),

Bl =Jnsudu=J~

311.01

snu

=

[p=amuJ. In [~_u_]. cnu

+ dnu

311.02 B2 = J ns 2 udu = u - E(u) - dnuesu,

311.03 Bs =Jns3 udu = ~ [(1 2

311.04 { 311.05 311.06

+ k 2 ) In (~_u_) cnu + dntt

[E(u)

=

E(p, k)J.

esu dnunsu].

B =Jns4udu =

B B

4

i

[(2

+k

_

u - 2(1

2m(1

2m+2 -

+k

2)

E(u) - dnuesu (ns2u

+ k2) B 2m + (1 -

+ 2 + 2k2)J.

2m) k 2 B 2m - 2 - en u dn u ns2m+lu 2m+ 1 •

(2m +1) (1+k 2) B 2m + 1 - 2m k 2 B 2m - 1- cn u dn u ns2m + 2 u 2(m 1)

+

2m+3 =

Cm -- - J

2)

tmdt - J eos"'cpdrp - Jen'" u V(1- t 2 ) (k'2-+ k 2 t2) V1- k2 sin2rp

d u,

[t = cos P = en u J.

312.00 Co = J du 312.01

=

u =F(p, k),

C1 = J enudu = [eos-1 (dnu)J/k = [sin-1 (ksnu)J/k.

[p=amuJ.

t 93

Integrals of the Twelve Jacobian Elliptic Functions.

2

312.02 C = J cn 2 udu =

;1 [E(u) -

[E(u) = E(rp, k)].

k'2 U ],

312.03 C3 = J cn3 udu = 2~8 [(2k2 - 1) sin-l (k sn u)

312.04

I

C4

+ ksnu dnu].

= J cn4 udu t

=

3/i'

[(2 - 3k2 ) k'2 U

+ 2(2k2 -1) E(u) + k2 snu cnu dnu].

312•05 C2m+2 = 2m{2/iI-t) CI ", +

(2m -t) /i'l C sm (2m

+ t) /i

-.+ snu dnucnl"'-lu

l

312.06 C2mH = (2m+t) (2/iI-t) Clm+1 + 2m/i'· Cam- 1 +snudnucnamu 2{m

D =j

'"

V(tl -

=j

tmdt

t){/i l + /i'S tl)

+ t) /il

dfll

V

cos m tp t - /ilsin·fII

=jnc"'udu

'

[t = 1/cosrp = ncu].

313.00 Do = J du = u = F(rp, k), 313.01 D1=

[rp

j ncudu= j -cnu- = -Ii' 1n [/i' sn cnu+ dn du

u

t

u ]

.

313.02 D 2 = Jnc 2 udu= /i~1 [k'2 u -E(u)+dnutnu], [E(u) = E(rp, k), rp

313.04

I

D4

= Jnc 4 udu =

3

/it"

[k'2(2k'2 - k 2) U

+ (2 -

4k2

= amu].

=

am u].

+ 2 (2k2 -1) E(u) +

+ k'2 nc2u ) tnudnu].

313.05

=

313.06 D

2m/iID. m _ 1 + (2m+ t) (t- 2/iI)D."'+1 +tnudnunc