Handbook of Functional Equations Functional Inequalities

As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he sai

  • PDF / 6,140,488 Bytes
  • 555 Pages / 439.44 x 666.24 pts Page_size
  • 72 Downloads / 221 Views

DOWNLOAD

REPORT


Aims and Scope Optimization has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time, one of the most striking trends in optimization is the constantly increasing emphasis on the interdisciplinary nature of the field. Optimization has been a basic tool in all areas of applied mathematics, engineering, medicine, economics, and other sciences. The series Springer Optimization and Its Applications publishes undergraduate and graduate textbooks, monographs and state-of-the-art expository work that focus on algorithms for solving optimization problems and also study applications involving such problems. Some of the topics covered include nonlinear optimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objective programming, description of software packages, approximation techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393

Themistocles M. Rassias Editor

Handbook of Functional Equations Functional Inequalities

2123

Editor Themistocles M. Rassias Department of Mathematics National Technical University of Athens Athens, Greece

ISSN 1931-6828 ISSN 1931-6836 (electronic) ISBN 978-1-4939-1245-2 ISBN 978-1-4939-1246-9 (eBook) DOI 10.1007/978-1-4939-1246-9 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014949795 Mathematics Subject Classification (2010): 39-XX, 41-XX, 46-XX © Springer Science+Business Media, LLC 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the r