Hydrocarbons from Algae

Hydrocarbons are detected in species of all algal phyla, but their contents are generally below 2% of algal dry weight skewed toward odd-carbon number, typically at C15, C17, or C21. Botroycoccus braunii, a green colonial species (300–500 μm), contains ex

  • PDF / 210,592 Bytes
  • 10 Pages / 439.37 x 666.142 pts Page_size
  • 69 Downloads / 273 Views

DOWNLOAD

REPORT


Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2818

2

Hydrocarbon and its Occurrence in Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2818

3 3.1 3.2 3.3

Botrycoccus Brauni – a Hydrocarbon Rich Alga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2821 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2821 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2821 Hydrocarbon Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2822

4

Culture and Growth of B. Braunii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2823

5

Research Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2825

K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_209, # Springer-Verlag Berlin Heidelberg, 2010

2818

31

Hydrocarbons from Algae

Abstract: Hydrocarbons are detected in species of all algal phyla, but their contents are generally below 2% of algal dry weight skewed toward odd-carbon number, typically at C15, C17, or C21. Botroycoccus braunii, a green colonial species (300–500 mm), contains exceptionally high hydrocarbons. Among the three races of B. braunii, race A contains C25–C31 n-alkadienes/trienes up to 61% dry weight and race B contains C31–C37 botryococcenes (triterpenes) up to 86% of dry weight. Race L contains lycopadienes (tetraperpene) C40H78 up to 8% dry weight. Cultures with 0.3% CO2-enriched air could shorten mass doubling time by 3.6 times. Nitrogen deficiency favors lipid accumulation, but nitrogen required for growth should be above 0.2 mg L 1. The optimal temperature for B. braunii is 20–25 C with a light intensity of 60–100 W m 2. Slow growth is the major hurdle retarding the production of hydrocarbon at a large scale. The combined approach of molecular biology, genetic engineering and ecology is recommended to escalate the algal growth and hydrocarbon production to yield a commercially competitive alternative for renewable biofuels from algae.

1

Introduction

Hydrocarbons are considered the most stable group of naturally occurring compounds and are one of the Earth’s most important energy resources (McMurry, 2000). Due to oil crisis, a lot of research on hydrocarbon in algae was conducted in the 1970s, but this momentum did not last long. The majority of hydrocarbons found naturally occur in crude oil, but many oil shales may be originated from algae (Cane, 1969). In the last century, the hydrocarbon content of coorongite was discovered to be the rubbery deposit