Insect Cell Versus Bacterial Overexpressed Membrane Proteins: An Example, the Human ABCG2 Transporter

The multidrug resistance phenotype of cancer cells has been often related to overexpression of plasma membrane ATP-binding cassette transporters, which are able to efflux many types of drug by using the energy of ATP hydrolysis. ABCG2 is a half-transporte

  • PDF / 14,276,185 Bytes
  • 452 Pages / 504 x 720 pts Page_size
  • 84 Downloads / 157 Views

DOWNLOAD

REPORT


in

Molecular Biology™

Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK



For other titles published in this series, go to www.springer.com/series/7651

as

Membrane Protein Structure Determination Methods and Protocols

Edited by

Jean-Jacques Lacapère INSERM U773/CRB3, Université Paris Diderot – Paris 7, Paris, France

Editor Jean-Jacques Lacapère INSERM U773/CRB3 Université Paris Diderot – Paris 7 Paris France [email protected]

ISSN 1064-3745 e-ISSN 1940-6029 ISBN 978-1-60761-761-7 e-ISBN 978-1-60761-762-4 DOI 10.1007/978-1-60761-762-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010930685 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or ­dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, ­neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover illustration: Membrane protein determination starts from extraction-purification and reaches atomic structure by crystal formation and X-ray diffraction or electron microscopy analysis, or nuclear magnetic resonance studies combined or not with molecular modelling. Printed on acid-free paper Humana Press is part of Springer Science+Business Media (www.springer.com)

Preface Membrane proteins represent almost 40% of all proteins, but only a small number of their structures have been determined. Alone or associated with other proteins, membrane proteins play several roles in the cells. They are involved in signal transduction, ion exchanges, transport of metabolites, molecules or proteins. Cellular communications are controlled or regulated by membrane proteins. Indeed, they are involved in communications between cells, outside/inside cell exchanges, cytosolic traffic among different organelles as well as cytosol/organelles exchanges. Only a few functional classes of membrane proteins have been structurally characterized and mostly are transporters working alone. Membrane proteins are difficult to study mostly because they are often poorly abundant and thus difficult to puri