Insertion of Metabolite Transporters into the Endosymbiont Membrane(s) as a Prerequisite for Primary Endosymbiosis

Eukaryotes acquired the ability to perform photosynthesis by capturing and stably integrating a photoautotrophic prokaryote. This event, referred to as primary endosymbiosis, occurred only once in the ancestral protoalga, giving rise to the Archaeplastida

  • PDF / 337,049 Bytes
  • 27 Pages / 439.37 x 666.142 pts Page_size
  • 77 Downloads / 190 Views

DOWNLOAD

REPORT


Abstract Eukaryotes acquired the ability to perform photosynthesis by capturing and stably integrating a photoautotrophic prokaryote. This event, referred to as primary endosymbiosis, occurred only once in the ancestral protoalga, giving rise to the Archaeplastida comprising three major photoautotrophic lineages: the glaucophytes, the red algae, and the green algae. One crucial step for the success of the endosymbiosis must have been the integration and coordination of the metabolism of the host and the endosymbiont. Metabolic integration requires traffic of metabolites across the envelope membrane, which represents the specificity barrier separating the cyanobiont from the host cell cytoplasm. Insertion of translocators into the endosymbiont’s envelope was necessary to ensure a controlled exchange of molecules and to take full advantage of the newly acquired metabolic entity. Based on genome sequence data, phylogenetic analyses revealed that the major contribution in establishing a connection between the two partners was provided by the host cell in order to rapidly take control over the endosymbiont, with a minor contribution coming from the cyanobiont and from a third chlamydial source. With this chapter we provide an update on recent findings in elucidating the repertoire of plastidic transporters with a focus on their evolutionary history. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transport of Metabolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carbon Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitrogen Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54 59 59 66

F. Facchinelli • A.P.M. Weber (*) Institut fu¨r Biochemie der Pflanzen, Heinrich-Heine Universita¨t Du¨sseldorf, Universita¨tstrasse 1, 40225 Du¨sseldorf, Germany e-mail: [email protected] W. Lo¨ffelhardt (ed.), Endosymbiosis, DOI 10.1007/978-3-7091-1303-5_4, © Springer-Verlag Wien 2014

53

54

F. Facchinelli and A.P.M. Weber

Evolutionary Origin of the Plastidic Translocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intracellular Parasites as Drivers for the Metabolic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70 7