Integral transforms
A function g(y) of a variable y (which may be complex) is called the integral transform of a function f(x) with respect to a kernel K(x, y) when $$g(y) = \int\limits_a^b {K(x,y)f(x)} dx.$$.
- PDF / 3,554,261 Bytes
- 78 Pages / 439.37 x 666.14 pts Page_size
- 16 Downloads / 269 Views
		    Literature
 
 5nz=tanhz cnz=dnz=sechz
 
 + e1 + 3e1 cosech [z(3e1f"21] •
 
 P(z) =
 
 K=oo
 
 (nK)
 
 1
 
 q=l. e1=e2=-Tea'
 
 1 Ii k'-2 exp -]{' = 16 k~
 
 g2
 
 =
 
 3e;, ga = e:.
 
 Literature BELLMAN, R.: A brief introduction to theta functions. New York: Holt, Rinehart and Winston 1961. BYRD, P., and M. FRIEDMAN: Handbook of elliptic integrals for engineers and physicists: BerlinjGottingenjHeidelberg: Springer 1954. ERDELYI, A.: Higher transcendental functions, Vol. 2. New York: Mc-GrawHill 1953. HANCOCK, H.: Theory of elliptic functions. New York: Dover 1958. - Elliptic integrals. New York: Wiley 1917. JAHNKE, E., F. EMDE and F. LOESCH: Tables of higher functions. New York: M:cGraw-Hill1960. MILNE-THOMSON, L. M.: Jacobian elliptic function tables. New York: Dover 1950. MACRoBERT, T. M.: Functions of a complex variable. London: MacMillan 1958. NEVILLE, E. H.: Jacobian elliptic functions. Oxford 1951. OBERHETTINGER, F., and W. MAGNUS: Anwendung der elliptischen Funktionen in Physik und Technik. BerlinjGottingenjHeidelberg: Springer 1949. SCHULER, M., und H. GEBELEIN: Five place tables of elliptic functions. BerlinjGottingenjHeidelberg: Springer 1955. TRICOMI, F.: Elliptische Funktionen. BerlinjGottingen/Heidelberg: Springer 1948. WHITTAKER, E. T., and G. N. WATSON: A course of modern analysis. Cambridge 1944.
 
 Chapter XI
 
 XI. Integral transforms A function g(y) of a variable y (which may be complex) is called the integral transform of a function t (x) with respect to a kernel K (x, y) when g(y) =
 
 f
 
 a
 
 b
 
 K(x. y) t(x) dx.
 
 W. Magnus et al., Formulas and Theorems for the Special Functions of Mathematical Physics © Springer-Verlag Berlin Heidelberg 1966
 
 396
 
 XI. Integral transforms
 
 The kernel functions K (x, y) and the limits a, b of the interval considered here are the following most frequently encountered in applications. a
 
 0
 
 I
 
 b
 
 1
 
 00
 
 ---0
 
 00
 
 (n-2 f cos (xy)
 
 Fourier cosine
 
 1
 
 Fourier sine
 
 2
 
 (2 ;Tt) -"2 eixy
 
 exponential Fourier
 
 3
 
 e- Xy
 
 One sided Laplace
 
 4
 
 e- XY
 
 Two sided Laplace
 
 5
 
 x y- 1
 
 Mellin
 
 6
 
 2 I
 
 (!? sin
 
 ----
 
 00
 
 00
 
 00
 
 00
 
 ---0 00 --
 
 (xy)
 
 I
 
 ---00 0 --
 
 Type of transform
 
 K(x. y)
 
 I
 
 0
 
 00
 
 (xy)"2 J~ (xy)
 
 Hankel
 
 00 0 - -- -
 
 1
 
 00
 
 Kix(Y)
 
 Lebedev
 
 \l! -..!..+jx(y)
 
 Mehler
 
 \l!~..!.. +ix (y)
 
 generalised Mehler
 
 -10
 
 e-h(x-y)'
 
 Gauss (or Weierstrass)
 
 11
 
 2
 
 - -- 1
 
 00
 
 -=-:~I
 
 7
 
 -8 -9
 
 --
 
 2
 
 These transform types listed before admit (under certain conditions) explicit inversion formulas: 1. Fourier cosine transform 1
 
 i
 
 g(y} =
 
 (!)"2
 
 t(x} =
 
 2 ..!.. (n-)2 !
 
 00
 
 t(x) cos (xy) dx, g(y) cos (xy) dy.
 
 XI. Integral transforms 2. Fourier sine transform
 
 (2).!.. j
 
 00
 
 I(x) sin (xy) dx,
 
 (2).!.. j
 
 00
 
 g(y) sin (xy) dy.
 
 g(y) = -;; I(x) = -;;
 
 2
 
 2
 
 3. Exponential Fourier transform 1
 
 2n/
 
 1\g(y) = (
 
 f
 
 I(x) i
 
 j
 
 g(y)
 
 00
 
 1Pl
 
 dx,
 
 -00
 
 nr
 
 1
 
 I(x) = (21 2
 
 -00
 
 e-''"'' dy.
 
 4. One sided Laplace transformation
 
 g(y) =
 
 00
 
 f
 
 o
 
 I(x) e-'"" dx,
 
 1
 
 cHoo
 
 I(x) = -nz 2. f . g(y) e'"" dy. C-tOO 5. Two sided Laplace transform 00
 
 f
 
 g(y) =
 
 I(x) e-'"" dx,
 
 -00
 
 1
 
 I(x) = -n~ 2.
 
 c+.oo
 
 f.
 
 g(y) e'		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	