Transforms

  • PDF / 1,972,595 Bytes
  • 39 Pages / 439.37 x 666.142 pts Page_size
  • 55 Downloads / 231 Views

DOWNLOAD

REPORT


13.1

13.1 Trigonometric Fourier Series Fourier series of periodic functions T=period offunctionf(t)

f(~

il = 2; = basic angular frequency

Cosine - sine - form

-2T

Orthogonality

o

2T

T,n=k=O TI2, n=k>O

o

T

T

{~n*k

T

f coskiltcosniltdt=

f sin kilt sinniltdt=

-T

{TI2 k=n>O ' 0, k*n

T

f sin kilt cos nilt dt = 0

o

ao

f(t) = -2 +

L (an cos nilt + bn sin nilt) * 00

n=l

a +T

2 an=f f f(t)cosniltdt a

(n~O)

2 a +T bn=f f f(t)sinniltdt a

(n~l)

Special case. Period T= 21t a f(t) = 20 +

1

00

L (an cos nt + bn sin nt)

n=l

1" an = 1rJ/(t) cos nt dt

f(t) even ~ an =

4 TI2 f f(t) cos nilt dt,

f

f(t)odd~an=O,

o

bn =

1rj" f(t) sin nt dt 1"

bn = 0

4 TI2 bn=f ff(t)sinniltdt

o

* For bounded and piece-wise differentiable functions, the equality holds at points t where f(t) is continuous. At jumps the Fourier series equals (f(t + ) + f(t -))12. 310 L. Råde et al., Mathematics Handbook for Science and Engineering © Springer-Verlag Berlin Heidelberg 2004

13.1 Approximation in mean (cf. sec. 12.1) ao n sn(t)= -2 + L (ak cos kDt+ hk sinHU) k=l

Amplitude - phase form (f(t) real, £2= 2rrlT) f(t) =Ao +

L

n=l

An cos(n£2t+ an)' An;::: 0 for n;::: l.

Calculation of An' an' see below. Complex form (£2= 2rr1T) Orthogonality

Io eikQte-infltdt-_{T,k=n 0 k ' T

:#:n

f(t)=

=

L

n=-oo

cne inflt'

I

1 a+T . cn = T f(t)e-m!ltdt a

Relations between Fourier coefficients sin, cos form - amplitude, phase form (f(t) real) ~

I AO=2ao,

An=Ajan+b/i

_ _. _ {-arctan(bnlan), an>O > a,,-arg(an lb n),n_l 1t-arctan(bn la n), an1 ,n_

13.1

Parseval's identities [Below, an,bn,An' lXn,cn refer to!(t), a~, b~, A~, a~, c~, refer to g(t)]

1 a+T

J f(t) g(t) dt= ~ cnc~ a

T

J f(t- r)g( r)dr = L n