Transforms
- PDF / 1,972,595 Bytes
- 39 Pages / 439.37 x 666.142 pts Page_size
- 55 Downloads / 267 Views
		    13.1
 
 13.1 Trigonometric Fourier Series Fourier series of periodic functions T=period offunctionf(t)
 
 f(~
 
 il = 2; = basic angular frequency
 
 Cosine - sine - form
 
 -2T
 
 Orthogonality
 
 o
 
 2T
 
 T,n=k=O TI2, n=k>O
 
 o
 
 T
 
 T
 
 {~n*k
 
 T
 
 f coskiltcosniltdt=
 
 f sin kilt sinniltdt=
 
 -T
 
 {TI2 k=n>O ' 0, k*n
 
 T
 
 f sin kilt cos nilt dt = 0
 
 o
 
 ao
 
 f(t) = -2 +
 
 L (an cos nilt + bn sin nilt) * 00
 
 n=l
 
 a +T
 
 2 an=f f f(t)cosniltdt a
 
 (n~O)
 
 2 a +T bn=f f f(t)sinniltdt a
 
 (n~l)
 
 Special case. Period T= 21t a f(t) = 20 +
 
 1
 
 00
 
 L (an cos nt + bn sin nt)
 
 n=l
 
 1" an = 1rJ/(t) cos nt dt
 
 f(t) even ~ an =
 
 4 TI2 f f(t) cos nilt dt,
 
 f
 
 f(t)odd~an=O,
 
 o
 
 bn =
 
 1rj" f(t) sin nt dt 1"
 
 bn = 0
 
 4 TI2 bn=f ff(t)sinniltdt
 
 o
 
 * For bounded and piece-wise differentiable functions, the equality holds at points t where f(t) is continuous. At jumps the Fourier series equals (f(t + ) + f(t -))12. 310 L. Råde et al., Mathematics Handbook for Science and Engineering © Springer-Verlag Berlin Heidelberg 2004
 
 13.1 Approximation in mean (cf. sec. 12.1) ao n sn(t)= -2 + L (ak cos kDt+ hk sinHU) k=l
 
 Amplitude - phase form (f(t) real, £2= 2rrlT) f(t) =Ao +
 
 L
 
 n=l
 
 An cos(n£2t+ an)' An;::: 0 for n;::: l.
 
 Calculation of An' an' see below. Complex form (£2= 2rr1T) Orthogonality
 
 Io eikQte-infltdt-_{T,k=n 0 k ' T
 
 :#:n
 
 f(t)=
 
 =
 
 L
 
 n=-oo
 
 cne inflt'
 
 I
 
 1 a+T . cn = T f(t)e-m!ltdt a
 
 Relations between Fourier coefficients sin, cos form - amplitude, phase form (f(t) real) ~
 
 I AO=2ao,
 
 An=Ajan+b/i
 
 _ _. _ {-arctan(bnlan), an>O > a,,-arg(an lb n),n_l 1t-arctan(bn la n), an1 ,n_
 
 13.1
 
 Parseval's identities [Below, an,bn,An' lXn,cn refer to!(t), a~, b~, A~, a~, c~, refer to g(t)]
 
 1 a+T
 
 J f(t) g(t) dt= ~ cnc~ a
 
 T
 
 J f(t- r)g( r)dr = L n		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	