Invariant Manifolds

  • PDF / 5,995,298 Bytes
  • 153 Pages / 461 x 684 pts Page_size
  • 13 Downloads / 209 Views

DOWNLOAD

REPORT


583 M. W. Hirsch C. C. Pugh M. Shub

Invariant Manifolds

Springer-Verlag Berlin. Heidelberg • New York 1977

Authors

Morris W. Hirsch Charles C. Pugh Department of Mathematics, University of California Berkeley, CA 94720/USA

Michael Shub Department of Mathematics, Queens College City University of New York Flushing, NY 11367/USA

Library of Congress Cataloging in Publication Data

Hirsch~ Morris W 1933Invariant manifolds. (Lecture notes in mathematics ; 583) Bibliographsr: p. Includes index. 1. Riemannian manifolds. 2. Invaris~uts. 3- Sub~ manifolds. 4. Foliations (Mathematics) I. Pugh~ Charles C., 1940 joint author. II. Shub~ Michael~ 1942joint author. III. Title. IV. Series: Lecture notes in mathematics (Berlin) ; 583. QA3.L28 no. 583 [QA649] 510'.8s [514'.7] 77-5464

A M S Subject Classifications (1970): 3 4 C 3 0 , 3 4 C 4 0 , 3 4 C 3 5 , 58F10, 58F15, 5 7 D 3 0 , 5 7 D 5 0 , 5 7 E 2 0 ISBN 3-540-08148-8 ISBN 0-387-08148-8

Springer-Verlag Berlin • Heidelberg • N e w Y o r k Springer-Verlag N e w York • Heidelberg • Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks, Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Vertag Berlin - Heidelberg 1977 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2141/3140-543210

INVARIANT MANIFOLDS M. Hirsch I ,

C. Pugh 2, M. Shub 3

Table o f Contents §I.

Introduction

. . . . . . . . . . . . . . . . . . . . . . . .

~2.

The L i n e a r Theory o f Normal H y p e r b o l i c i t y

. . . . . . . . .

5

§3.

The Cr S e c t i o n Theorem and L i p s c h i t z

. . . . . . . . .

25

~4.

The Local Theory o f Normally H y p e r b o l i c I n v a r i a n t Compact M a n i f o l d s . . . . . . . . . . . . . .

39

~5.

Pseudo H y p e r b o l i c i t y

53

Jets

and Plaque F a m i l i e s . . . . . . . . . .

1

~5A. Center M a n i f o l d s . . . . . . . . . . . . . . . . . . . . . .

64

~6.

. . . . . . . . . . . . . . .

67

. . . . . . . . . . . . . . .

108

Noncompactness and U n i f o r m i t y

~6A. Forced Smoothness o f i :

V ÷ H

~6B. Branched L a m i n a t i o n s . . . . . . . . . . . . . . . . . . . .

II0

~7,

115

Normally H y p e r b o l i c F o l i a t i o n s

and L a m i n a t i o n s . . . . . . .

~7A. Local Product S t r u c t u r e and Local S t a b i l i t y ~8.

. . . . . . . .

132

E q u i v a r i a n t F i b r a t i o n s and Nonwanderinq Sets . . . . . . . .

136

REFEREIICES . . . . . . . . . . . . . . . . . . . . . . . . .

145

Index

148

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Ipartially

supported by N a t i o n a l Science Foundation Grant GP-29073.

2partially

supported by N a t i o n a l Science