Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities

  • PDF / 13,538,926 Bytes
  • 292 Pages / 468 x 683.759 pts Page_size
  • 34 Downloads / 266 Views

DOWNLOAD

REPORT


1222 Anatole Katok Jean-Marie Strelcyn with the collaboration of F. Ledrappier and F. Przytycki

Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Authors Anatole Katok Mathematics 253-37, California Institute of Technology Pasadena, CA 91125, USA Jean-Marie Strelcyn Universite Paris-Nord, Centre Scientifique et Polytechnique Departernent de Mathematiques Avenue 1.-B. Clement, 93430 Villetaneuse, France Francois Ledrappier Laboratoire de Probabilites, Universite Paris VI 4 Place Jussieu, 75230 Paris, France Feliks Przytycki Mathematical Institute of the Polish Academy of Sciences ul. Sniadeckich 8, 00-950 Warsaw, Poland

Mathematics Subject Classification (1980): Primary: 28020, 34F05, 58F 11, 58F 15 Secondary: 34C35, 58F08, 58F18, 58F20, 58F22, 58F25 ISBN 3-540-17190-8 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-17190-8 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Printed in Germany Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140-543210

TABLE OF CONTENTS Introduction

V

EXISTENCE OF INVARIANT MANIFOLDS FOR SMOOTH MAPS WITH SINGULARITIES

PART I.

(by A. KATOK and J.-M. STRELCYN) 1.

Class of Transformations with Singularities

2.

Preliminaries

3.

Overcoming Influence of Singularities

10

4.

The Proof of Lemma 3.3 and Related Topics

19

5.

The Formulation of Pesin's Abstract Invariant Manifold Theorem

24

6.

Invariant Manifolds for Maps Satisfying Conditions (1.1) - (1.3)

25

7.

Some Additional Properties of Local Stable Manifolds

35

PART II.

1

5

ABSOLUTE CONTINUITY

41

(by A. KATOK and J.-M. STRELCYN) 1.

Introduction

41

2.

Preliminary Remarks and Notations

42

3.

Some Facts from Measure Theory and Linear Algebra

46

4.

Formulation of the Absolute Continuity Theorem and a Sketch of the Proof

55

5.

Start of the Proof - I

62

6.

The First Main Lemma

65 79

7.

Start of the Proof - II

8.

Projection and Covering Lemmas

9.

Comparison of the Volumes

88 107

10.

The Proof of the Absolute Continuity Theorem

117

11.

Absolute Continuity of Conditional Measures

130

12.

Infinite Dimensional Case

138

13.

Final Remarks

154

PART III.

THE ESTIMATION OF ENTROPY FROM BELOW THROUGH LYAPUNOV CHARACTERISTIC EXPONENTS

157

(by F. LEDRAPPIER and J.-M. STRELCYN) 1.

Introduction and Formulation of the Results

157

2.

Preliminaries

162

3.

Construction of the Partition

4.

Computation of Entropy

n

167

175

IV

PART IV.

THE ESTIMATION OF ENTROPY FROM ABOVE THROUGH LYAPUNOV CHARACTERISTIC EXPONENTS