Kinetic and Surface Mechanisms to Growth of Hexagonal Boron Nitride
- PDF / 98,183 Bytes
- 6 Pages / 612 x 792 pts (letter) Page_size
- 47 Downloads / 277 Views
Y5.13.1
Kinetic and Surface Mechanisms to Growth of Hexagonal Boron Nitride Patrícia R. R. Barreto, Alan E. Kull†, Mark A. Cappelli† Laboratório Associado de Plasma, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, CP 515, 12201-970, Brazil † Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3032, USA ABSTRACT A mechanism is presented for the gas-phase chemistry and surface reactions describing the growth of boron nitride films. The gas phase mechanism includes 33 species and 216 elementary reactions. Rate parameters for 117 elementary reactions were obtained from published experimental/theoretical data and those for the other 99 were determined using transition state theory. The mechanism examined here is an extension and update of a previous mechanism that contained 26 species and 67 elementary reactions. Standard reaction flux/pathway and gradient sensitivity analysis techniques are used to identify important reaction pathways. The calculations were handled through the use of the ChemKin software package. The model was applied to the growth of hexagonal boron nitride in an arcjet plasma source operating on mixture of BF3, H2 and N2. From the growth rate and experimental conditions for such reactors, this work demonstrates that species with mole fractions in the range of 1 × 10-10 - 2 × 10-4 (easily generated by gas-phase conditions) can account for the measured growth rate. A comparison of the predicted mole fractions of the gas-phase species present for the experimental residence times with those required to account for the measured film growth rates allows us to identify possible growth precursors. At the experimental settings, it is found that the residence time of the reacting species does not allow the flow to reach the chemical equilibrium, and that many radicals other than the source gases can account for the measured BN growth rate. The gas-phase is shown to be removed from thermodynamic equilibrium. For comparison, the equilibrium mole fractions were also calculated using an available equilibrium chemistry solver, STANJAN. Growth rates of 10-9 to 10-6 kg m-1 s-1 were measured for a wide range of H2, BF3 and NF3 flux. Both the finite-rate kinetics and equilibrium calculations confirm the importance of added hydrogen to facilitate boron nitride condensation from the gas phase. A simple surface mechanism with 7 steps is proposed with rate constants chosen to best fit the experimental growth kinetics. The results of the model, with surface rate coefficients determined from analogous gas-phase reactions, tuned slightly to agree with the experimental growth rates for BFx, x = 1, 2 or 3, as the rate-limiting growth precursor. It is also shown that the hydrogen atom has a great influence in the growth rate and that fluorine atom etches the hBN films. INTRODUCTION Recently, there has been considerable interest in the growth of boron nitride (BN) films. Like carbon, boron nitride has different allotropes, the most common of which are the hexagonal (hBN) and cubic (cBN)
Data Loading...