Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time

For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not

  • PDF / 11,304,819 Bytes
  • 292 Pages / 439.37 x 666.142 pts Page_size
  • 42 Downloads / 225 Views

DOWNLOAD

REPORT


MATHEMATICAL PHYSICS STUDIES

Series Editor:

M. PLATO, Universite de Bourgogne, Dijon, France

VOLUME 14

Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time by

Andre Lichnerowicz Chaire de Physique Mathematique, College de France, Paris, France

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

Library of Congress Cataloging-in-Publication Data Lichnerowicz, Andre, 1915Magnetohydrodynamics : waves and shock waves in curved space-time by Andre Lichnerowicz. p. em. -- 0.......... .. .. .. .. .. . .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. . 19 9

VIII. 1 1. -

The case

1:~

< 0 ................................................................. 202

VIII. 12. -

Conclusions ........................................................................ 210

Annex

=0

• Shock waves and alfven waves.

AI. 1. -

Singular shocks ................................................................. 211

Al.2.-

Compatibility between shock waves andAlfven waves...... ... .......... ...... ........ .. .. ...... .. ...... .. ........ .... .... ........... 220

TABLE OF CONTENTS

ix

Annex II - Magnetosonic rays.

All. 1 . -

Directions of the rays....................................................... 226

All.2.-

Action of 6 on the direction of the ray............................

229

Annex Ill - Classical approximations of. the relativistic shock equations.

Alii. 1.-

The frame connected with the shock ......... ,.......................

232

Alll.2.-

Classical approximation...................................................

232

Bibliography...................................................................................

235

Note - Approach to a quantum theory of fields for a curved space-time.

I •

Tensor propagators............................................................. 237

Nl.l.-

Orientations over a space-time........................................ 237

Nl.2.-

Global hyperbolicity ......................................................... 239

Nl.3.-

Bitensors and Di rae bitensors.......................................... 2 40

Nl.4.-

Linear differential-tensor operators associated with g .. 242

Nl.5.-

Elementary Kernels and propagators...............................

Nl.6.-

Tensor propagators relative to the space-time of

244

Minkowski ......................................................................... 249 Nl.7.-

Propagators relative to the operator (D. + IJ)................. 252

TABLE OF CONTENTS

X

II

- Applications

to

quantization

problems

over

a

curved

space-time.

Nil. 1.-

Commutator for vector Meson .......................................... Commutator for a free electromagnetic field ................... Commutator for a varying gravitational field with mass Commutator for a varying gravitational field without mass term......................................................................... Creation. Annihilation operators ...................................... Dirac field.........................................................................

25