Mathematische Physik: Klassische Mechanik
Als Grenztheorie der Quantenmechanik besitzt die klassische Dynamik einen grossen Formenreichtum, vom gut berechenbaren (integablen) bis zum chaotischen (mischenden) Verhalten. Immer ausgehend von interessanten Beispielen in der Physik bietet das vorliege
- PDF / 17,200,728 Bytes
- 645 Pages / 439.37 x 666.142 pts Page_size
- 65 Downloads / 223 Views
Andreas Knauf
Mathematische Physik: Klassische Mechanik
123
Prof. Dr. Andreas Knauf Department Mathematik FAU Erlangen-Nürnberg Cauerstr. 11 91058 Erlangen Deutschland [email protected]
ISBN 978-3-642-20977-2 e-ISBN 978-3-642-20978-9 DOI 10.1007/978-3-642-20978-9 Springer Heidelberg Dordrecht London New York Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar. Mathematics Subject Classification (2010): 37N05 c Springer-Verlag Berlin Heidelberg 2012 Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Einbandentwurf: WMXDesign GmbH, Heidelberg Gedruckt auf säurefreiem Papier Springer ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)
Inhaltsverzeichnis Bemerkungen zur Mathematischen Physik Motive und Ziele . . . . . . . . . . . . . Inhalte des Buches ,Klassische Mechanik’ Inhalte der Lehrbuchreihe . . . . . . . . . Zur Notation . . . . . . . . . . . . . . . . Kleines Englisch-W¨ orterbuch . . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
1 Einleitung
xi xi xiii xiv xv xvi 1
2 Dynamische Systeme 2.1 Iterierte Abbildungen, dynamische Systeme . . . . . . . . . . . . 2.2 Stetige dynamische Systeme . . . . . . . . . . . . . . . . . . . 2.3 Differenzierbare dynamische Systeme . . . . . . . . . . . . . . .
11 12 16 25
3 Gew¨ ohnliche Differentialgleichungen 3.1 Definitionen und Beispiele . . . . . . . . . . . . . . . . 3.2 Lokale Existenz und Eindeutigkeit der L¨osung . . . . . 3.3 Globale Existenz und Eindeutigkeit der L¨osung . . . . . 3.4 Transformation in ein dynamisches System . . . . . . . 3.5 Das maximale Existenzintervall . . . . . . . . . . . . . 3.6 Der Hauptsatz der Differentialgleichungstheorie . . . . 3.6.1 Linearisierung der DGL entlang einer Trajektorie 3.6.2 Aussage und Beweis des Hauptsatzes . . . . . . 3.6.3
Data Loading...