Metal Nanoparticles in Microbiology

Following an introduction to biogenic metal nanoparticles, this book presents how they can be biosynthesized using bacteria, fungi and yeast, as well as their potential applications in biomedicine. It is shown that the synthesis of nanoparticles using mic

  • PDF / 4,656,215 Bytes
  • 305 Pages / 439.37 x 666.142 pts Page_size
  • 38 Downloads / 224 Views

DOWNLOAD

REPORT


.

Mahendra Rai

l

Nelson Duran

Editors

Metal Nanoparticles in Microbiology

Editors Mahendra Rai, Ph.D. Professor and Head Biotechnology Department SGB Amravati University Amravati-444 602 Maharashtra, India [email protected]

Professor Nelson Duran Biological Chemistry Laboratory Instituto de Quı´mica Universidade Estadual de Campinas CEP 13084862, Caixa Postal 6154 Campinas, S.P., Brazil [email protected]

ISBN 978-3-642-18311-9 e-ISBN 978-3-642-18312-6 DOI 10.1007/978-3-642-18312-6 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011925677 # Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Nanotechnology is a multidisciplinary and interdisciplinary science dealing with various aspects of research and technology at nanolevel. Nanoparticles range from 1 to 100 nm, which form building blocks of nanotechnology. Metal nanoparticles such as gold, silver, platinum and copper have gained considerable attention in recent times due to their fundamental and technological interest. These nanoparticles have unique catalytic, electronic and optical properties different from the metallic particles. Usually, the nanoparticles can be synthesized by physical, chemical and biological methods. The physical and chemical methods involve the use of strong chemical reducing agents such as sodium borohydride and weak reducing agents such as sodium citrate, alcohols, use of gamma- and UV rays, etc. Studies have reported that the biological methods depict an inexpensive and eco-friendly method for synthesis of nanoparticles. To date, biosynthesis of nanoparticles has been demonstrated by the use of biological agents such as bacteria, fungi, yeasts actinomycetes and plants. Synthesis of nanoparticles using microbes or plants is a new and emerging ecofriendly science. Many investigators have been using biological methods for the synthesis of nanoparticles. So far, there is no book on biogenic nanoparticles. Therefore, this would be the first book of its kind all over the world. The book covers synthesis of nanoparticles by differe