Model Theoretic Algebra Selected Topics
- PDF / 9,364,745 Bytes
- 239 Pages / 461 x 684 pts Page_size
- 34 Downloads / 322 Views
		    521 Greg Cherlin
 
 Model TheoreticAlgebra Selected Topics
 
 Springer-Venag Berlin. Heidelberg- New York lg 76
 
 Author Greg Cherlin Department of Mathematics Rutgers University New Brunswick New Jersey 08903/USA
 
 Ulbrmry of Congress Cataloging in Publication Data
 
 Cherlin, Greg, 1948Model theoretic algebra. (Lecture notes in mathematics ; 521) Bibliography: p. Includes indexes. 1. Model theory. 2. Algebra. I. Title. II~ Series: Lecture notes in mathematics (Berlin) QA3.I28 no. 521 [QAg.7] 510'.8s [512'.02] 76-15388
 
 AMS Subject Classifications (1970): 02 H15 ISBN 3-540-07696-4 Springer-Verlag Berlin Heidelberg 9 - New York ISBN 0-38?-07696-4 Springer-Verlag New York Heidelberg 9 Berlin 9 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use Of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under w 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. 9 by Springer-Verlag Berlin 9Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
 
 Table
 
 of C o n t e n t s
 
 Introduction
 
 . . . . . . . . . . . . . . . . . . . .
 
 I
 
 O.
 
 Theory
 
 4
 
 Basic w
 
 I.
 
 Model First
 
 order
 
 w
 
 n-types
 
 w
 
 Unions
 
 w
 
 The
 
 w
 
 Cardinal
 
 w
 
 Definable
 
 Transfer
 
 languages.
 
 and of
 
 First
 
 order
 
 sentences
 
 of
 
 Theorems
 
 The
 
 w
 
 Notes
 
 4
 
 9
 
 9
 
 diagrams
 
 9
 
 theorems
 
 14
 
 . . . . . . . . . . . . . .
 
 9
 
 9
 
 . . . . . . . . . .
 
 in A l g e b r a Maps
 
 Nullstellensatz
 
 ~
 
 .
 
 . . . . . . . . . . . . . . . .
 
 and
 
 Hilbert's
 
 seventeenth
 
 21 30
 
 . . . . . . . . . . . . . .
 
 The Ax-~ochen-Ershov over Local Fields)
 
 21 22
 
 problem
 
 . . . . . . . . . . . . . . . .
 
 Exercises
 
 16 17
 
 . . . . . . . . . . . . . .
 
 on C n
 
 9 12
 
 . . . . . . . . . . . . . . . .
 
 sets
 
 w
 
 . o
 
 . . . . . . . . . . . . . . . . . .
 
 transfer
 
 Polynomial
 
 , ~
 
 saturation
 
 Chains
 
 method
 
 w
 
 II.
 
 . . . . . . . . . . . . . . . .
 
 30 (Diophantine
 
 Transfer Principle: . . . . . . . . . . . .
 
 ~ 1 7 6
 
 o ~
 
 Problems
 
 o ~
 
 .
 
 .
 
 .
 
 32
 
 .
 
 w
 
 Valued
 
 fields
 
 . . . . . . . . . . . . . .
 
 32
 
 w
 
 p-adic
 
 fields
 
 . . . . . . . . . . . . . .
 
 36
 
 w
 
 Complete
 
 fields
 
 and
 
 cross
 
 Hensel
 
 w
 
 Normalized
 
 w
 
 Artin's
 
 w
 
 Artin-Schreier
 
 theory
 
 w
 
 Puiseux
 
 fields
 
 w
 
 Notes
 
 38
 
 ........
 
 44
 
 . . . . . . . . . . . . for
 
 p-adic
 
 o ~
 
 .
 
 .
 
 .
 
 .
 
 .
 
 o
 
 61
 
 Complete
 
 Structures
 
 Existentially
 
 w
 
 Infinitely
 
 w
 
 Finitely
 
 w
 
 Existentially
 
 complete
 
 w
 
 Rings
 
 complete
 
 nilpotents
 
 ~6
 
 A generalized
 
 w
 
 Notes
 
 generic generic
 
 without
 
 ....
 
 structures
 
 structures
 
 65 ~ 1 7 6
 
 o ,
 
 o ,
 
 . .
 
 74
 
 ....
 
 structures
 
 ....
 
 commutative
 
 83 92
 
 rings
 
 95
 
 . . . . . . . .
 
 Nullstellensatz
 
 103
 
 ......
 
 104
 
 . . . . . . . . . . . . . . . . Complete
 
 Division
 
 division
 
 Rings
 
 105 108
 
 ....
 
 109
 
 w
 
 Amalgamating
 
 w w
 
 Existentially
 
 Existentially complete division ring		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	