Model Theoretic Algebra Selected Topics

  • PDF / 9,364,745 Bytes
  • 239 Pages / 461 x 684 pts Page_size
  • 33 Downloads / 264 Views

DOWNLOAD

REPORT


521 Greg Cherlin

Model TheoreticAlgebra Selected Topics

Springer-Venag Berlin. Heidelberg- New York lg 76

Author Greg Cherlin Department of Mathematics Rutgers University New Brunswick New Jersey 08903/USA

Ulbrmry of Congress Cataloging in Publication Data

Cherlin, Greg, 1948Model theoretic algebra. (Lecture notes in mathematics ; 521) Bibliography: p. Includes indexes. 1. Model theory. 2. Algebra. I. Title. II~ Series: Lecture notes in mathematics (Berlin) QA3.I28 no. 521 [QAg.7] 510'.8s [512'.02] 76-15388

AMS Subject Classifications (1970): 02 H15 ISBN 3-540-07696-4 Springer-Verlag Berlin Heidelberg 9 - New York ISBN 0-38?-07696-4 Springer-Verlag New York Heidelberg 9 Berlin 9 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use Of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under w 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. 9 by Springer-Verlag Berlin 9Heidelberg 1976 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

Table

of C o n t e n t s

Introduction

. . . . . . . . . . . . . . . . . . . .

I

O.

Theory

4

Basic w

I.

Model First

order

w

n-types

w

Unions

w

The

w

Cardinal

w

Definable

Transfer

languages.

and of

First

order

sentences

of

Theorems

The

w

Notes

4

9

9

diagrams

9

theorems

14

. . . . . . . . . . . . . .

9

9

. . . . . . . . . .

in A l g e b r a Maps

Nullstellensatz

~

.

. . . . . . . . . . . . . . . .

and

Hilbert's

seventeenth

21 30

. . . . . . . . . . . . . .

The Ax-~ochen-Ershov over Local Fields)

21 22

problem

. . . . . . . . . . . . . . . .

Exercises

16 17

. . . . . . . . . . . . . .

on C n

9 12

. . . . . . . . . . . . . . . .

sets

w

. o

. . . . . . . . . . . . . . . . . .

transfer

Polynomial

, ~

saturation

Chains

method

w

II.

. . . . . . . . . . . . . . . .

30 (Diophantine

Transfer Principle: . . . . . . . . . . . .

~ 1 7 6

o ~

Problems

o ~

.

.

.

32

.

w

Valued

fields

. . . . . . . . . . . . . .

32

w

p-adic

fields

. . . . . . . . . . . . . .

36

w

Complete

fields

and

cross

Hensel

w

Normalized

w

Artin's

w

Artin-Schreier

theory

w

Puiseux

fields

w

Notes

38

........

44

. . . . . . . . . . . . for

p-adic

o ~

.

.

.

.

.

o

61

Complete

Structures

Existentially

w

Infinitely

w

Finitely

w

Existentially

complete

w

Rings

complete

nilpotents

~6

A generalized

w

Notes

generic generic

without

....

structures

structures

65 ~ 1 7 6

o ,

o ,

. .

74

....

structures

....

commutative

83 92

rings

95

. . . . . . . .

Nullstellensatz

103

......

104

. . . . . . . . . . . . . . . . Complete

Division

division

Rings

105 108

....

109

w

Amalgamating

w w

Existentially

Existentially complete division ring