Modular Units

In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup

  • PDF / 18,644,525 Bytes
  • 371 Pages / 439.394 x 666.123 pts Page_size
  • 16 Downloads / 253 Views

DOWNLOAD

REPORT


Editors

M. Artin S. S. Chern 1. L. Doob A. Grothendieck E. Heinz F. Hirzebruch L. Hormander S. Mac Lane W. Magnus C. C. Moore 1. K. Moser M. Nagata W. Schmidt D. S. Scott 1. Tits B. L. van der Waerden Managing Editors

B. Eckmann

S. R. S. Varadhan

Daniel S. Kubert Serge Lang

Modular Units

Springer Science+Business Media, LLC

AMS Subject Classifications: IOD99, 12A45 Library of Congress Cataloging in Publication Data Kubert. Daniel S. Modular units. (Grundlehren der mathematischen Wissenschaften; 244) Bibliography: p. Includes index. I. Algebraic number theory. 2. Class field theory. 3. Modules (Algebra) I. Lang, Serge, 1927II. Title. QA247.K83 512'.74 81-824 AACR2

© 1981 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1981 Softcover reprint of the hardcover 1st edition 1981 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.

9 8 76 5 4 3 2 I ISBN 978-1-4419-2813-9 DOI 10.1007/978-1-4757-1741-9

ISBN 978-1-4757-1741-9 (eBook)

Contents

Introduction

IX

Chapter I

Distributions on Toroidal Groups §1. §2. §3. §4. §5. §6.

The Cartan Group Distributions Stickel berger Distributions Lifting Distributions from Q/Z Bernoulli-Cartan Numbers Universal Distributions

2 4 8 11 12

17

Chapter 2

Modular Units §1. §2. §3. §4. §5. §6.

The Klein Forms and Siegel Functions Units in the Modular Function Field The Siegel Units as Universal Distribution Thc Precise Distribution Relations The Units over Z The Weierstrass Units

24

25 34 37

42 48 50

Chapter 3

Quadratic Relations §1. Formal Quadratic Relations §2. The Even Primitive Elements §3. Weierstrass Forms §4. The Klein Forms §5. The Siegel Group

58 58 62 66 68

75

Chapter 4

The Siegel Units Are Generators

81

§1. Statement of Results

RI

§2. Cyclotomic Integers

li4

v

Contents

*3. *4. *5. *6. §7.

Remarks on q-Expansions The Prime Power Case The Composite Case Dependence of ~ Projective Limits

87 90 94 103 104

Chapter 5

The Cuspidal Divisor Class Group on X(N) §1. *2. §3. §4. §5. §6. §7. *8. §9.

The Stickelberger Ideal The Prime Power Case, p ~ 5 Computation of the Order Eigencomponents at Level p p-Adic Orders of Character Sums Proof of the Theorems The Special Group The Special Group Disappears on Xdp) Projective Limits

110

111 115 118 122 126 131 133 140 141

Chapter 6

The Cuspidal Divisor Class Group on Xl (N) §1. Index of the Stickelberger Ideal §2. The p-Primary Part at Level p

§3. §4. §5. §6.

Part of the Cuspidal Divisor Class Group on XdN) Computation of a Class Number Projective Limits Projective Limit of the Trivial Group

146 147 151 152 159 165 168

Chapter 7

Modular Units on Tate Curves

172

§1. Specializations of Divisors and Functions at Infinity §2. Non-Degeneracy of the Units §3. The Value of a Gauss Sum

173 181 186

Chapter 8

Diophantine Applications §1. Integral Points

§2. Correspondence with the Fermat Curve §3. Torsion Points VI

190 190 193

197

Contents Chapter