Modular Units
In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup
- PDF / 18,644,525 Bytes
- 371 Pages / 439.394 x 666.123 pts Page_size
- 16 Downloads / 299 Views
		    Editors
 
 M. Artin S. S. Chern 1. L. Doob A. Grothendieck E. Heinz F. Hirzebruch L. Hormander S. Mac Lane W. Magnus C. C. Moore 1. K. Moser M. Nagata W. Schmidt D. S. Scott 1. Tits B. L. van der Waerden Managing Editors
 
 B. Eckmann
 
 S. R. S. Varadhan
 
 Daniel S. Kubert Serge Lang
 
 Modular Units
 
 Springer Science+Business Media, LLC
 
 AMS Subject Classifications: IOD99, 12A45 Library of Congress Cataloging in Publication Data Kubert. Daniel S. Modular units. (Grundlehren der mathematischen Wissenschaften; 244) Bibliography: p. Includes index. I. Algebraic number theory. 2. Class field theory. 3. Modules (Algebra) I. Lang, Serge, 1927II. Title. QA247.K83 512'.74 81-824 AACR2
 
 © 1981 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 1981 Softcover reprint of the hardcover 1st edition 1981 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer Science+Business Media, LLC.
 
 9 8 76 5 4 3 2 I ISBN 978-1-4419-2813-9 DOI 10.1007/978-1-4757-1741-9
 
 ISBN 978-1-4757-1741-9 (eBook)
 
 Contents
 
 Introduction
 
 IX
 
 Chapter I
 
 Distributions on Toroidal Groups §1. §2. §3. §4. §5. §6.
 
 The Cartan Group Distributions Stickel berger Distributions Lifting Distributions from Q/Z Bernoulli-Cartan Numbers Universal Distributions
 
 2 4 8 11 12
 
 17
 
 Chapter 2
 
 Modular Units §1. §2. §3. §4. §5. §6.
 
 The Klein Forms and Siegel Functions Units in the Modular Function Field The Siegel Units as Universal Distribution Thc Precise Distribution Relations The Units over Z The Weierstrass Units
 
 24
 
 25 34 37
 
 42 48 50
 
 Chapter 3
 
 Quadratic Relations §1. Formal Quadratic Relations §2. The Even Primitive Elements §3. Weierstrass Forms §4. The Klein Forms §5. The Siegel Group
 
 58 58 62 66 68
 
 75
 
 Chapter 4
 
 The Siegel Units Are Generators
 
 81
 
 §1. Statement of Results
 
 RI
 
 §2. Cyclotomic Integers
 
 li4
 
 v
 
 Contents
 
 *3. *4. *5. *6. §7.
 
 Remarks on q-Expansions The Prime Power Case The Composite Case Dependence of ~ Projective Limits
 
 87 90 94 103 104
 
 Chapter 5
 
 The Cuspidal Divisor Class Group on X(N) §1. *2. §3. §4. §5. §6. §7. *8. §9.
 
 The Stickelberger Ideal The Prime Power Case, p ~ 5 Computation of the Order Eigencomponents at Level p p-Adic Orders of Character Sums Proof of the Theorems The Special Group The Special Group Disappears on Xdp) Projective Limits
 
 110
 
 111 115 118 122 126 131 133 140 141
 
 Chapter 6
 
 The Cuspidal Divisor Class Group on Xl (N) §1. Index of the Stickelberger Ideal §2. The p-Primary Part at Level p
 
 §3. §4. §5. §6.
 
 Part of the Cuspidal Divisor Class Group on XdN) Computation of a Class Number Projective Limits Projective Limit of the Trivial Group
 
 146 147 151 152 159 165 168
 
 Chapter 7
 
 Modular Units on Tate Curves
 
 172
 
 §1. Specializations of Divisors and Functions at Infinity §2. Non-Degeneracy of the Units §3. The Value of a Gauss Sum
 
 173 181 186
 
 Chapter 8
 
 Diophantine Applications §1. Integral Points
 
 §2. Correspondence with the Fermat Curve §3. Torsion Points VI
 
 190 190 193
 
 197
 
 Contents Chapter		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	