Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics Leif Hermansson

  • PDF / 258,569 Bytes
  • 1 Pages / 585 x 783 pts Page_size
  • 15 Downloads / 198 Views

DOWNLOAD

REPORT


section containing color photographs. The references (49) and suggested readings (50) are current up to 2014 and adequate, but not extensive, considering the information explosion in this topic. The book is recommended for graduate students with a background in condensed-matter physics, chemistry, and metallurgy; scientists; researchers in materials industries; and the wider audience interested in strategic materials. China gave up the quota system this year and the hybrid electric car—the poster boy of rare earths—uses less of

Nanostructural Bioceramics: Advances in Chemically Bonded Ceramics Leif Hermansson Pan Stanford, 2014 158 pages, $129.95 ISBN 9789814463430

T

his book is an excellent introduction to the field of bionanomaterials for the researcher as well as the newcomer to the field. It introduces readers to the structure and characteristics of new bioceramics, chemically bonded nanobioceramics, and their interaction with tissues in vivo and in vitro, posing the question: What determines the biocompatibility and the toxicity of such new inserts in human bodies? The book thoroughly explains chemically bonded bioceramics from a chemical composition and mineralogy point of view and early tissue response, providing researchers with comprehensive knowledge about nanobioceramics for practical applications. It is written from a combined materials chemistry, mineralogy, and medical perspective, and comprises 14 chapters and 158 pages. The first chapter is an introduction to classifications of ceramics, stable and resorbable chemically bonded bioceramics, and their relationship with other biomaterials. Chapter 2 goes through the structure of hard tissue, and how chemically bonded bioceramics interact in vivo

through the contact zone with hard tissues. In chapter 3, several types of mechanisms and chemical reactions describe how the chemically bonded bioceramics are processed, including a discussion of the proper time for curing. Chapter 4 details the different types of additives that comprise active complementary binders, processing agents, and fillers. Chapter 5 covers the necessary characterizations and investigations of different types of chemically bonded bioceramics. Chapter 6 explains the formation mechanisms and the solubility products of some of the nanostructure phases developed in some chemically bonded bioceramics. Chapter 7 describes how nanostructures influence properties and mechanical strength, including crystal size and porosity structure. Chapter 8 introduces an overview of the importance of nanostructures, including nanocrystals and nanoporosity in relation to bioactivity, anti-bacterial properties, microleakage, hemocompatability, and controlled drug delivery. Chapter 9 details using chemically bonded bioceramics in dental applications, such MRS BULLETIN

them in its recent versions. However, efforts to develop new sources, more efficient processes, recycling technologies, and substitutes are not expected to slow down. The outcome of these efforts will hopefully be covered in future editions. T