Neuronal representation of stand and squat in the primary motor cortex of monkeys
- PDF / 3,821,753 Bytes
- 9 Pages / 595.276 x 793.701 pts Page_size
- 62 Downloads / 191 Views
RESEARCH
Open Access
Neuronal representation of stand and squat in the primary motor cortex of monkeys Chaolin Ma1,2*, Xuan Ma2,3, Hang Zhang2, Jiang Xu3 and Jiping He2,3*
Abstract Background: Determining neuronal topographical information in the cerebral cortex is of fundamental importance for developing neuroprosthetics. Significant progress has been achieved in decoding hand voluntary movement with cortical neuronal activity in nonhuman primates. However, there are few successful reports in scientific literature for decoding lower limb voluntary movement with the cortical neuronal firing. We once reported an experimental system, which consists of a specially designed chair, a visually guided stand and squat task training paradigm and an acute neuron recording setup. With this system, we can record high quality cortical neuron activity to investigate the correlation between these neuronal signals and stand/squat movement. Methods/results: In this research, we train two monkeys to perform the visually guided stand and squat task, and record neuronal activity in the vast areas targeted to M1 hind-limb region, at a distance of 1 mm. We find that 76.9% of recorded neurons (1230 out of 1598 neurons) showing task-firing modulation, including 294 (18.4%) during the pre-response window; 310 (19.4%) for standing up; 104 (6.5%) for the holding stand phase; and 205 (12.8%) during the sitting down. The distributions of different type neurons have a high degree of overlap. They are mainly ranged from +7.0 to 13 mm in the Posterior-Anterior dimension, and from +0.5 to 4.0 mm in Dosal-lateral dimension, very close to the midline, and just anterior of the central sulcus. Conclusions/significance: The present study examines the neuronal activity related to lower limb voluntary movements in M1 and find topographical information of various neurons tuned to different stages of the stand and squat task. This work may contribute to understanding the fundamental principles of neural control of lower limb movements. Especially, the topographical information suggests us where to implant the chronic microelectrode arrays to harvest the most quantity and highest quality neurons related to lower limb movements, which may accelerate to develop cortically controlled lower limb neuroprosthetics for spinal cord injury subjects. Keywords: Monkeys, Single neuron recording, Topographical information, Lower limb movement, Neuroprosthetics
Background Over the past two decades, numbers of researches have been reported in investigation of the relationship between the firing pattern of cortical neurons and the animal’s behavioural performance [1-12]. Using behavioural neurophysiological methods, significant progress has been achieved in the study of topographical information of the cerebral cortex [13-17]. These pioneering studies provide hopes and promises for the development of * Correspondence: [email protected]; [email protected] 1 Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, China 2
Data Loading...