Nuclear Power Plants

The building of more nuclear power plants is one of the proposed solutions to the increasing production of anthropogenic CO2 and the mitigation of the global warming threat. Had the USA constructed an additional 56 nuclear power plants in the 1990s, the c

  • PDF / 2,666,829 Bytes
  • 42 Pages / 439.37 x 666.142 pts Page_size
  • 31 Downloads / 281 Views

DOWNLOAD

REPORT


Nuclear Power Plants

Abstract The building of more nuclear power plants is one of the proposed solutions to the increasing production of anthropogenic CO2 and the mitigation of the global warming threat. Had the USA constructed an additional 56 nuclear power plants in the 1990s, the country would have been in compliance with the Kyoto protocol. Nuclear power plants are typically very large (1,000 MW) and very complex power producing units. The nuclear reactor itself contains large amounts of radioactive materials, which if released in the environment, may cause large-scale environmental accidents. For this reason, a nuclear reactor must have multiple levels of safety systems and its controls must be designed to shut down the reactor within a very short time. All nuclear reactors have six basic components, which are described in detail in this chapter. Several types of nuclear reactors and nuclear power plants have been developed by different countries. The special design characteristics and the operation of these plants are summarized. Because accidents in nuclear power plants are feared the most by the public, the three accidents that received the highest notoriety, at the Three-Mile Island in the U.S.A., at Chernobyl in the former Soviet Union and at the Fukushima Dai-ichi power plant in Japan are described in detail. The causes of the accidents are examined and early actions that could have been taken by the operators are presented. Finally, it is apparent that, if the world is to rely on nuclear energy in the long-term, the more abundant uranium-238 and other fertile nuclear materials must be utilized. This makes necessary the use of breeder reactors, which may become the next generation of nuclear reactors.

5.1 Basic Components of a Thermal Nuclear Power Plant Nuclear power plants are similar to the conventional power plants that utilize the Rankine (steam) or the Brayton (gas) cycles. In nuclear power plants, the heat is supplied to the cycle from the nuclear reactor. Simply put, in a nuclear power plant

E. E. (Stathis) Michaelides, Alternative Energy Sources, Green Energy and Technology, DOI: 10.1007/978-3-642-20951-2_5,  Springer-Verlag Berlin Heidelberg 2012

131

132

5 Nuclear Power Plants

the reactor is a substitute for the boiler or the combustion chamber. The thermal energy generated by fission in the reactor is continuously removed by a fluid, the reactor coolant, and is used in the power plant for the production of electricity. A few other components are added to nuclear power plants that facilitate the heat transfer to the working fluid in the cycle or enhance the reactor’s safety. There are two basic types of reactors, thermal reactors and fast reactors, named after the types of neutrons that are predominantly used for the fission of the nuclear fuel. Of these, thermal reactors are the ones that are predominantly used and, depending on the type of fuel that cools them, are divided in water cooled and gas cooled reactors. Even though the thermal nuclear reactors are very complex systems, the