Nuclear power and nuclear safety
- PDF / 258,278 Bytes
- 1 Pages / 585 x 783 pts Page_size
- 13 Downloads / 237 Views
Inside:
EDITORIAL
Nuclear power and nuclear safety REGIONAL INITIATIVE
Is Japan embracing a solar future in the post-Fukushima era? REGIONAL INITIATIVE
Cleanup technologies following Fukushima
ENERGY QUARTERLY ORGANIZERS CO-CHAIRS George Crabtree, Argonne National Laboratory, USA Elizabeth A. Kócs, University of Ilinois at Chicago, USA Andrea Ambrosini, Sandia National Laboratories, USA Monika Backhaus, Corning Incorporated, France David Cahen, Weizmann Institute, Israel Russell R. Chianelli, The University of Texas at El Paso, USA Shirley Meng, University of California, San Diego, USA Sabrina Sartori, University of Oslo, Norway Anke Weidenkaff, University of Stuttgart, Germany M. Stanley Whittingham, Binghamton University, The State University of New York, USA Steve M. Yalisove, University of Michigan, USA
Images incorporated to create the energy puzzle concept used under license from Shutterstock.com.
To suggest ideas for ENERGY QUARTERLY, to get involved, or for information on sponsorship, send email to [email protected].
Nuclear power and nuclear safety Recently, I was involved in a four-year-long National Academy of Sciences study of lessons learned from Fukushima. One scenario we studied was an accident that almost happened at Fukushima—a spent-fuel fire after a spent-fuel pool boiled dry. Five years ago, the release of 2% of cesium-137 (30-year half-life) from the three Fukushima core meltdowns caused the long-term relocation of about 100,000 people. A spent-fuel pool fire could have caused a hydrogen explosion, resulting in the release of cesium-137 directly to the atmosphere and necessitating the relocation of millions to possibly tens of millions. The losses would be comparable to the cumulative investment in all the world’s nuclear power plants. The hydrogen would be generated by the reaction of steam with the hot zirconium alloy cladding of the uncooled spent fuel above a temperature of about 1000°C. The obvious question is whether an alternative cladding could be developed that does not have this unfortunate property—for example silicon carbide? In 1974, when I first became involved with nuclear issues, the US Atomic Energy Commission projected a US nuclear capacity of 3000 GWe in the year 2016, with growth at a rate of 100 GWe/year between 2010 and 2016. Today, US total nuclear capacity is about 100 GWe, the same as 25 years ago. Global nuclear capacity has been flat as well. The accidents in 1979 at Three Mile Island and in 1986 at Chernobyl were only one cause of this truncation of the growth of nuclear power. A second is that the growth of US electricity consumption slowed dramatically in the 1970s. It had doubled every decade between 1920 and 1970, but in the four decades between 1975 and 2015, it doubled only once more. As a result, it would take only 500 GWe of nuclear capacity to generate as many kilowatt-hours as all US power plants generate today. A third reason why there has been no net increase in global nuclear capacity since 1990 is economics. Paying off the investment in a nucl
Data Loading...