Observation of the Earth System from Space

In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth’s shape, gra

  • PDF / 17,698,537 Bytes
  • 484 Pages / 439.371 x 666.142 pts Page_size
  • 34 Downloads / 249 Views

DOWNLOAD

REPORT


Jakob Flury Reiner Rummel Christoph Reigber Markus Rothacher Gerd Boedeker Ulrich Schreiber Editors

Observation of the Earth System from Space with 249 Figures and 54 Tables

Dr. J. Flury Professor Dr. R. Rummel TU München Institut für Astonomische Physikalische Geodäsie Arcisstr. 21 80290 München Germany

Professor Dr. G. Boedecker Bayerische Akademie der Wissenschaften Bayerische Kommission für die Internationale Erdmessung Marstallplatz 8 80539 München Germany

Professor Dr. C. Reigber Professor Dr. M. Rothacher GeoForschungsZentrum Potsdam Dept. 1, Geodäsie und Fernerkundung Telegrafenberg 14473 Potsdam Germany

Professor Dr. U. Schreiber TU München Forschungseinrichtung Satellitengeodäsie Fundamentalstation Wettzell 93444 Kötzting Germany

Library of Congress Control Number: 2005933897 ISBN 10 ISBN 13

3-540-29520-8 Springer Berlin Heidelberg New York 978-3-540-29520-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2006 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: E. Kirchner, Heidelberg Production: Almas Schimmel Typesetting: GOCE-Projektbüro Deutschland, TU München Printing: Krips bv, Meppel Binding: Stürtz AG-, Würzburg Printed on acid-free paper 30/3141/as 5 4 3 2 1 0

Preface

In the recent years, space-based observation methods have led to a substantially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial variations of the Earth’s shape, gravity field, and magnetic field, as well as atmosphere density. In the frame of the German R&D programme GEOTECHNOLOGIEN, research projects have been launched in 2002 related to the satellite missions CHAMP, GRACE and ESA’s planned mission GOCE, to complementary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity field models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of magnitude for the long and medium waveleng