On the Possibility of Accelerating Succession by Manipulating Soil Microorganisms

Soil microorganisms have effects on brown and green food webs and influence processes up to the ecosystem scale. It is difficult to separate and quantify such effects at site and landscape scale because of negative and positive feedbacks between the vario

  • PDF / 594,496 Bytes
  • 40 Pages / 439.37 x 666.142 pts Page_size
  • 18 Downloads / 177 Views

DOWNLOAD

REPORT


On the Possibility of Accelerating Succession by Manipulating Soil Microorganisms Virgil Iordache

Abstract Soil microorganisms have effects on brown and green food webs and influence processes up to the ecosystem scale. It is difficult to separate and quantify such effects at site and landscape scale because of negative and positive feedbacks between the various communities and the large numbers or variables. There is not a single research strategy to reduce the dimensionality of the system, which leads to complementary traditions and bodies of knowledge. The objective of this chapter is to provide an image on the structure of the existing relevant knowledge and extract information supporting the use of microorganisms for accelerating succession at ecosystem scale. After describing the succession patterns by groups of organisms (bacteria, fungi, plants, invertebrates, small mammals, and other vertebrates), the literature about the strength of the interaction between community scale processes is reviewed, and key variables or ecological objects influenced by soil microorganisms are identified. Then complementary conceptual tools useful for the practical application of this knowledge are introduced: hotspots, state-and-transition models, network analysis, and coupling models. The last part includes a scheme for a comprehensive multifunctional practical approach putting the use of fungi in the general context of landscape sensitive restoration. When needed soil microbial manipulations could be distributed in space with discretization units having the size controlled by the heterogeneity of abiotic conditions and the spatial structure of vegetation supporting an optimal production of ecosystem services.

V. Iordache (*) Research Center for Ecological Services – CESEC, University of Bucharest, Bucharest, Romania e-mail: [email protected] © Springer Nature Switzerland AG 2020 A. Varma et al. (eds.), Plant Microbiome Paradigm, https://doi.org/10.1007/978-3-030-50395-6_11

191

192

11.1

V. Iordache

Introduction

Epistemic strategies for complex socio-ecological problems involve families of scientific sub-discplines dealing with processes of increasing complexity: ecophisiology, population ecology, community ecology, evolutionary ecology, ecosystem ecology and systems ecology. Each one is a strategy for the reduction of complexity, of dimenstionality in terms of variables and relations in between. Restoration ecology is such a complex socio-ecological problem. Thinking restoration or remediation in relation with ecological succession is already a well established approach (Walker et al. 2007). The problem has a large theoretical and methodological heterogeneity because it crosscuts many disciplinary fields, as shown in the first phrase, with different strategies to reduce the dimensionality of the natural complexity. First of all succession and community assembly are different and complementary theoretical frameworks relevant for this problem (Chang and HilleRisLambers 2016). Community assembly studies investigate t